
Categories for Cryptographic Composability

A Thesis

Presented to

the Established Interdisciplinary Committee

for Mathematics and Computer Science

Reed College

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Arts

Riley Shahar

May 2024

Approved for the Committee

(Mathematics and Computer Science)

Angélica Osorno Adam Groce

Acknowledgements

More people have contributed to this document than I could possibly name. I will have to

settle for an incomplete list.

This thesis would not even have gotten off the ground without my fantastic advisers:

Angélica, who started advising this thesis while on leave, who constantly indulged my

disparate categorical tangents, and who gives better feedback on drafts than any other

mentor I’ve ever had; and Adam, who advised a cryptography thesis with a student who

hadn’t taken cryptography, who was always willing to chat (complain) about academic

politics or messy papers, and who repeatedly brought me down from spates of abstract

nonsense by reminding me to think about the cryptography.

I am also thankful for the time of my readers, Greg Anderson and Mark Bedau, and of

the numerous academics who have indulged the questions of a too-ambitious undergrad

throughout the year. I specifically want to thank Alex Moll, who was always willing to

answer my very naive questions about probability theory and to listen to half-baked ideas

that were only tangentially relevant to him.

As an academic, I am especially indebted to Jana Comstock, who taught me to love

math; to Jim Fix, who taught me to love types; to Angélica, who taught me to love cate-

gories; to Sierra Maciorowski, who taught me to love teaching; and to Charlie McGuffey,

Zajj Daugherty, Adam, Angélica, and Steve Zdancewic, who throughout my time at Reed

and especially over the last year have given me advice and support in spades. The math-

ematician I am today is inextricable from their influence.

I would feel remiss not to mention the many authors of queer speculative fictions

from whom I draw continual inspiration and strength; among many, I will mention Ann

Leckie, Becky Chambers, Emily Tesh, R. F. Kuang, Rivers Solomon, Ryka Aoki, and Ursula

Le Guin.

Most of all, I would not have gotten through the last four years without the support

of my friends and family. I love and appreciate you all so much.

Table of Contents

Introduction . 1

Chapter 1: Cryptography . 3
1.1 Foundations . 3

1.1.1 One-Way Functions . 3

1.1.2 Proofs by Reduction . 4

1.1.3 Computational Indistinguishability 6

1.1.4 Interactive and Zero-Knowledge Computation 8

1.1.5 Adversaries and the Real-Ideal Paradigm 11

1.2 Cryptographic Problems . 12

1.2.1 Encryption . 12

1.2.2 Interactive Function Computation 14

1.2.3 Zero-Knowledge Proof . 15

1.3 Composition . 17

1.3.1 The Issues at Hand . 17

1.3.2 Composing Interactive Function Computations 18

1.3.3 A Counterexample to Parallel Composition 20

1.3.4 Universal Composability . 22

1.3.5 Alternative Approaches . 25

Chapter 2: Category Theory . 27
2.1 Basic Notions . 27

2.1.1 Categories . 27

2.1.2 (Iso)morphisms . 30

2.1.3 Functors . 32

2.1.4 Natural Transformations . 35

2.2 Monoidal Categories . 39

2.2.1 The Definition . 39

2.2.2 Examples . 41

2.2.3 String Diagrams . 43

2.2.4 Symmetry . 46

2.2.5 Monoidal Functors . 47

2.2.6 Multicategories . 50

Chapter 3: Categorical Cryptography . 53
3.1 Computation . 53

3.1.1 Deterministic Computation . 54

3.1.2 Probabilistic Computation . 55

3.1.3 Efficient and Effectful Computation 56

3.1.4 Quantum Computation . 57

3.2 Protocols . 58

3.2.1 States . 58

3.2.2 Flat Process Conversions . 61

3.2.3 Linear Process Conversions . 64

3.2.4 The One-Time Pad . 68

3.2.5 Extensions to the Framework . 74

3.2.6 Interactive Proof . 79

3.3 Security . 81

3.3.1 Attack Models . 82

3.3.2 The Security Definition . 84

3.3.3 The One-Time Pad . 89

3.3.4 A 2-Categorical Generalization . 91

3.4 Conclusion . 93

3.4.1 Paths Not Taken . 93

3.4.2 Evaluation . 94

Appendix A: Computer Scientific Foundations 97
A.1 Asymptotics . 97

A.2 Algorithms and Determinism . 98

A.3 Complexity Theory . 99

Desar’s chosen field in mathematics was so esoteric that nobody in the Institute or the Math
Federation could really check on his progress. That was precisely why he had chosen it.

— Ursula Le Guin, The Dispossessed

Abstract

We present introductory material on cryptography and category theory, focused on the

prerequisites to cryptographic composability. We then present the approach to crypto-

graphic composability of Broadbent and Karvonen. We give several novel contributions,

including a new model for cryptographic protocols which use both single- and multi-use

resources, and a 2-categorical generalization of their model which incorporates data about

computational reductions.

Introduction

To first approximation, cryptography is the mathematical study of secure computation. In
a computation, we want to use protocols to transform resources. For a computation to

be secure, it must successfully resist attacks by adversaries. This is an extremely broad

scope: cryptography includes secure communication, private data analysis, password-

based authentication, distributed consensus-making, fault-tolerance of sensor systems,

and many other applications.

In the modern world, computational systems do not run on their own. You may be

securely communicating with your bank on one tab, have email open on another tab, and

be syncing photos from your phone in the background. After that communication, your

bank may want to analyze your data in a way that respects your privacy. All this happens

for millions of people simultaneously. As such, we cannot study cryptographic protocols

in a vacuum: we need to consider how they behave in concert with other computational

systems. This is the problem of cryptographic composability.
As we will see, most frameworks for handling composability, including the popular

Universal Composability [Can00], rely on precise low-level machine models. Proofs in

these frameworks are only technically valid if their protocols can be encoded into the

machine model—and if that encoding satisfies certain technical hypotheses which do not

generally hold. This state of affairs poses significiant issues for both the feasibility of writ-

ing proofs in these frameworks, and—because of the general complexity of the underlying

machine models—for the trustworthiness of those proofs.

A natural way out is to give an axiomatization of the properties such a machine model,

or a theory of cryptography generated from it, should satisfy. If a composition theorem

can be proven for any theory satisfying these axioms, then proofs would not have to use

complex machine models except when that complexity is necessary to the development

of the protocol. We need an algebric model of computation for this to work: category

theory is such a model.

Category theorywas first used for cryptographic composability by Broadbent andKar-

vonen [BK22]. While we give several original contribution in Chapter 3, to first order, this

thesis is an exposition and evaluation of their framework. The key idea is that category

theory gives us sensible boundaries of abstraction: we can separately treat computation,

interaction, and security, and evaluate each such treatment on their own.

In some sense, this thesis has three goals: to give cryptographers the necessary back-

ground in category theory to evaluate categorical frameworks for themselves, to give cat-

egory theorists the enough background in cryptography for them to motivate their work

towards the potential applications, and to evaluate the existing literature and pose some

2 Introduction

barriers and open questions to a successful categorical theory of cryptographic compos-

ability. The thesis is divided along those lines.

In Chapter 1, we give an introduction to the foundations of cryptography, focusing

on definitions and examples relevant to the study of composability. Cryptographers can

safely skip this chapter, though cryptographers new to questions of composability may

be interested in Section 1.3, which presents several of the central difficulties.

In Chapter 2, we give an introduction to category theory oriented towards computer

scientists. There are many excellent books with this aim; our narrative distinguishes it-

self through its focus on monoidal categories, coherence axioms, and in particular string

diagrams, which form a powerful graphical language for reasoning about computational

objects. As in the previous chapter, the aim is to get to the necessary background for

cryptography as quickly as possible, and so we skip several standard topics of substan-

tial interest to computer scientists. Category theorists who are comfortable working with

string diagrams can safely skip this chapter, though there are several examples of compu-

tational applications that may be of interest.

In Chapter 3, we present the model of [BK22]. We also present several original con-

tributions:

• In Section 3.1.3, we show how to combine binary-encoded sets with Kleisi categories

to give categorical models of computationally-bounded, effectful computation.

• In Section 3.2.5, we give several extensions to the semantics of protocols of [BK22],

including tools for simultaneously handling single- andmulti-use resources, and for

modelling protocols with correlated input.

• In Section 3.2.6, we use these novel tools to give a categorical correctness definition

for interactive proofs.

• In Section 3.3.4, we generalize the model of [BK22] to a 2-categorical setting.

• Finally, in Section 3.4, we discuss several other lines of work, and give a heurstic

comparison between the categorical model and Universal Composability.

Chapter 1

Cryptography

Before considering categorical models of cryptography, we need to give some basic back-

ground. We aim this chapter primarily towards mathematicians, and thus will present

the basics of cryptography starting from foundational complexity-theoretic notions. The

reader unfamiliar with computer science theory should read Appendix A.

Standard introductions to cryptography include [KL14; PS10; Ros21]; this chapter is

especially indebted to the presentation of [PS10]. Many of the issues we consider are also

exposited by [Lin17].

1.1 Foundations

1.1.1 One-Way Functions
Many cryptographic protocols rely on one-way functions, which are informally functions

that are easy to compute, but hard to invert. The former notion is easy to formalize in

terms of time complexity, but the latter is more difficult. We typically ask that any “rea-

sonably efficient” algorithm—called the adversary—attempting to invert the function has

a negligible chance of success.

In computer science, we generally assume that algorithms are efficient if and only if

they are polynomial-time; this assumption has been borne out by decades of practice. This

motivates our definition of a “negligible” chance: we say that a function 𝑓 is negligible if
𝑓 (𝑛) = 𝑜 (𝑛−𝑘) for every 𝑘 ; in other words, if it is asymptotically smaller than any rational

function. In this case, wewrite 𝑓 = negl(𝑛) or just 𝑓 = negl. The set of negligible functions
has all the nice closure properties we expect; in particular, the sum of negligible functions

is negligible.

Notation. We will use PPT as shorthand for probabilistic polynomial-time. When we re-

fer to an adversary, distinguisher, or simulator, we always mean a non-uniform PPT algo-

rithm
1
.

Definition 1.1 (one-way function). A function 𝑓 is one-way if:

• (easy to compute) 𝑓 is PPT-computable;

1
Both PPT and non-uniform PPT are defined in Appendix A.

4 Chapter 1. Cryptography

• (hard to invert) for any adversaryA, natural number 𝑛, and uniform random choice

of input 𝑥 such that |𝑥 | = 𝑛,

Pr[𝑓 (A(1𝑛, 𝑓 (𝑥))) = 𝑓 (𝑥)] = negl(𝑛).

Note that |𝑥 | here is not the absolute value, but is instead the length of 𝑥 as a binary string:
if 𝑥 is a natural number, then by encoding in binary have that |𝑥 | = Θ(log

2
𝑥).

The idea is that, given 𝑦 = 𝑓 (𝑥), A attempts to find some 𝑥′ such that 𝑓 (𝑥′) = 𝑦.

If some adversary can do this with non-negligible probability, then the function is not

one-way. While the probability must be negligible in |𝑥 |, the adversary is given 𝑓 (𝑥) and
1
𝑛
as an input, and hence must run polynomially only in |𝑓 (𝑥) | + 𝑛. This is a common

technique called padding, wherein algorithms are given an extra input of 1
𝑛
to ensure they

have enough time to run.

We do not know that one-way functions exist. In fact, while the existence of one-way

functions implies that P ≠ NP, the converse is not known
2
. However, as in the following

examples, we have excellent candidates under fairly modest assumptions.

Example 1.2 (Factoring [PS10, subsection 2.3]). Suppose that for any adversary A and

for uniform random choice of primes 𝑝, 𝑞 < 2
𝑛
,

Pr[A(𝑝𝑞) = {𝑝, 𝑞}] = negl(𝑛).

This is the factoring hardness assumption, for which there is substantial evidence. Then

(𝑥,𝑦) ↦→ 𝑥𝑦 is one-way
3
.

Example 1.3 (Discrete Logarithm [KL14, subsection 8.3.2]). Let {𝐺𝑛} be a fixed sequence
of finite groups. The discrete logarithm hardness assumption for {𝐺𝑛} is that, for any ad-

versary A and for uniform random choice of 𝑔 ∈ 𝐺𝑛 and ℎ ∈ ⟨𝑔⟩ such that ℎ = 𝑔𝑘 ,

Pr[A(𝑔, ℎ) = 𝑘] = negl(𝑛).

Under the discrete logarithm hardness assumption, (𝑔, 𝑘) ↦→ 𝑔𝑘 is one-way.

The discrete logarithm hardness assumption is known to be false for certain groups,

such as the additive groups Z𝑝 for prime 𝑝 , in which case 𝑔𝑘 = 𝑔𝑘 and the Euclidean

algorithm solves the problem. However, it is believed to hold for groups such as Z∗𝑝 . For a
survey of various versions of this assumption, see [SS02].

1.1.2 Proofs by Reduction
Many cryptographic definitions, including Definition 1.1, take the form

for any adversaryA, natural number 𝑛, and uniform random choice of input 𝑥
such that |𝑥 | = 𝑛, some predicate on the output of A has negligible probability.

2
[Imp95] gives a classic discussion of the implications of various resolutions to P vs. NP on cryptography,

including the case where P ≠ NP but one-way functions nevertheless do not exist.

3
This statement is slightly imprecise: technically, (𝑥,𝑦) ↦→ 𝑥𝑦 is weakly one-way; to get the stronger

notion of Definition 1.1 requires a process called hardness amplification. See [PS10, Section 2.4] for details.

1.1. Foundations 5

The basic technique for proving results using these definitions is called proof by reduction.
The idea is to reduce one problem into another by starting with an arbitrary adversary

attacking the second and constructing an adversary attacking the first, such that the prob-

ability of the adversaries’ successes is related. If we assume the first problem is hard, then

by studying the structure of the reduction we can learn about the hardness of the second

problem. As such, we often say that reductions prove relative hardness results, so that for

instance Example 1.4 below proves the hardness of 𝑔 relative to 𝑓 .

More specifically, to prove hardness of a problem Π relative to Π′, a proof by reduction
generally goes as follows:

1. Fix an arbitrary adversary A attacking a problem Π.

2. Construct an adversary A′ attacking a problem Π′ which:

(a) Receives an input 𝑥′ to Π′.

(b) Translates 𝑥′ into an input 𝑥 to Π.

(c) Simulates A(𝑥), getting back an output 𝑦 which solves Π(𝑥).
(d) Translates 𝑦 into an output 𝑦′ which solve Π(𝑥′).

3. Analyze the structure of the translations to conclude thatA′ solves Π′ with proba-

bility related to that with which A solves Π.

4. Given the hardness assumptions on Π′, conclude relative hardness of Π.

The point is that A′’s job is to “simulate” the problem Π to A, using the data it gets

from Π′ to construct an input to Π. We illustrate this concept now.

Example 1.4 (a straightforward proof by reduction [PS10, subsection 2.4.1]). Let 𝑓 be a

one-way function. Then we claim 𝑔 : (𝑥,𝑦) ↦→ (𝑓 (𝑥), 𝑓 (𝑦)) is a one-way function. We

can compute 𝑔 in polynomial time by computing 𝑓 twice, so it remains to show that 𝑔 is

hard to invert.

Let A be any adversary. We will construct an adversary A′ such that, if A can non-

negligibly invert 𝑔, then A′ can non-negligibly invert 𝑓 .

The adversary A′ takes input 1
𝑛
and 𝑦. It then uniformly randomly chooses 𝑢 of

length 𝑛 and computes 𝑣 = 𝑓 (𝑢), which is possible because 𝑓 is easy to compute. NowA′
computes (𝑢′, 𝑥′) := A(12𝑛, (𝑣,𝑦)) and outputs 𝑥′.

WhenA′ simulatesA, it passes 𝑣 , which is 𝑓 (𝑢) for a uniform random𝑢, and𝑦, which

is (on well-formed inputs) 𝑓 (𝑥) for a uniform random 𝑥 . Thus, this looks like exactly the

input that A would “expect” to receive if it is attempting to break 𝑔. As such, whenever

A successfully inverts 𝑔, A′ successfully inverts 𝑓 . Since everything is uniform we may

pass to probabilities, and so:

Pr[𝑔(A(12𝑛, 𝑔(𝑢, 𝑥))) = 𝑔(𝑢, 𝑥)]
= Pr[𝑔(A(12𝑛, (𝑓 (𝑢), 𝑓 (𝑥)))) = (𝑓 (𝑢), 𝑓 (𝑥))] by definition of 𝑔

≤ Pr[𝑓 (A′(1𝑛, 𝑓 (𝑥))) = 𝑓 (𝑥)] by the above argument

= negl(𝑛) by the hardness assumption for 𝑓 .

Thus 𝑔 is one-way.

6 Chapter 1. Cryptography

Comparing this example to the above schema, we see that the problem Π′ is to invert
𝑓 , while the problem Π is to invert 𝑔. The input 𝑥′ to Π′ is 𝑦, while the computed input 𝑥

to Π is (𝑣,𝑦). The output 𝑦 of A is (𝑥′, 𝑢′), while the computed output 𝑦′ is 𝑥′.
Diagramatically, we can represent the algorithm A′ as follows:

𝑦

𝑥 ′

$

A′ .

A

While this is not standard notation in cryptography, it will be useful for our future

purposes. We read these diagrams—called circuit or string diagrams—from bottom to top.

This diagram says that A′ is an algorithm which takes 𝑦, uniformly randomly generates

another input (this is what the $ means), calls A, and returns its first output.

1.1.3 Computational Indistinguishability
Computational indistinguishability formalizes the notion of two probability distributions

which “look the same” to adversarial processes. We begin with probability distributions,

but because we want to do asymptotic analysis, we will eventually need to switch to

working with sequences of probability distributions.

Definition 1.5 (computational advantage). Let 𝑋 and 𝑌 be probability distributions over

a set 𝐴. The computational advantage of an adversary D, called the distinguisher, over 𝑋
and 𝑌 is

caD (𝑋,𝑌) =
���� Pr𝑥←𝑋
[D(𝑥) = 1] − Pr

𝑦←𝑌
[D(𝑦) = 1]

���� .
The idea is that the distinguisher D is trying to guess whether its input was drawn

from 𝑋 or 𝑌 ; the computational advantage is how often it can do so.

Proposition 1.6. Let D be a fixed distinguisher. Then caD is a pseudometric4 on the space
of probability distributions over an underlying set 𝐴.

Proof. Symmetry and non-negativity are immediate from the definition, while the triangle

inequality follows from the triangle inequality for real numbers. □

We now turn to the asymptotic case.

Definition 1.7 (probability ensemble). A probability ensemble is a sequence {𝑋𝑛} of prob-
ability distributions over sets {𝐴𝑛}.

4
A pseudometric on a space𝑋 is a function𝑑 : 𝑋 ×𝑋 → R≥0 which is zero on identical points, symmetric,

and satisfies the triangle inequality; in other words, it is a metric which does not necessarily differentiate

distinct points.

1.1. Foundations 7

We say that two ensembles are computationally indistinguishable if there is no effi-

cient way to tell between them. Formally:

Definition 1.8 (computational indistinguishability). Two probability ensembles {𝑋𝑛} and
{𝑌𝑛} over a set 𝐴 are computationally indistinguishable if for any (non-uniform PPT) dis-

tinguisher D and any natural number 𝑛,

caD (𝑋𝑛, 𝑌𝑛) = negl(𝑛).

In this case, we write {𝑋𝑛}
c≡ {𝑌𝑛}.

Remark 1.9. A natural thought is to define a metric on probability distributions by

ca(𝑋,𝑌) = sup

D
caD (𝑋,𝑌),

and extend to ensembles by asking that ca(𝑋𝑛, 𝑌𝑛) = negl(𝑛). Unfortunately, this does
not quite yield the correct notion, as there exist ensembles which are computationally

indistinguishable, but have sequences of distinguishers whose advantages for any fixed 𝑛

converge to 1.

Proposition 1.10. Computational indistinguishability is an equivalence relation on the
space of probability ensembles over a fixed set 𝐴.

Proof. Reflexivity and symmetry follow from the case of distributions. To show transitiv-

ity, let {𝑋𝑛}
c≡ {𝑌𝑛} and {𝑌𝑛}

c≡ {𝑍𝑛}. Let D be any distinguisher. Then for any 𝑛,

caD (𝑋𝑛, 𝑍𝑛) ≤ caD (𝑋𝑛, 𝑌𝑛) + caD (𝑌𝑛, 𝑍𝑛) by the triangle inequality

= negl(𝑛) + negl(𝑛) by assumption

= negl(𝑛). □

It is necessary to be precise about what is being claimed here. Transitivity states that

for any constant, finite sequence of probability ensembles, if each is computationally indis-

tinguishable from its neighbors, then the two ends of the sequence are computationally

indistinguishable. In cryptography, we sometimes want to consider the more general case

of a countable sequence of probability ensembles. We can do slightly better than the pre-

vious result:

Proposition 1.11. Let {𝑋𝑘} be a sequence of probability ensembles, so that each𝑋𝑘 = {𝑋𝑘𝑛 }
is itself a sequence of probability distributions, each over the underlying same sequence of
sets {𝐴𝑛}. Let {𝑋 𝑖}

c≡ {𝑋 𝑖+1} for each 𝑖 . Let {𝑌𝑛 = 𝑋
𝐾 (𝑛)
𝑛 } for some polynomial 𝐾 . Then

{𝑋 1

𝑛 }
c≡ {𝑌𝑛}.

Proof. Let D be any distinguisher. Then for any 𝑛,

caD (𝑋 1

𝑛 , 𝑌𝑛) = caD (𝑋 1

𝑛 , 𝑋
𝐾 (𝑛)
𝑛)

≤ caD (𝑋 1

𝑛 , 𝑋
2

𝑛) + · · · + caD (𝑋
𝐾 (𝑛)−1
𝑛 , 𝑋

𝐾 (𝑛)
𝑛)

= 𝐾 (𝑛)negl(𝑛)
= negl(𝑛).

In particular, the last equality follows because 𝐾 is polynomial. □

8 Chapter 1. Cryptography

On the other hand, the result does not hold for arbitrary 𝐾 . As we will see, this is

a fundamental limitation for cryptographic composition: we only expect composition to

work up to polynomial bounds.

One more closure result is valuable:

Proposition 1.12. Let {𝑋𝑛}
c≡ {𝑌𝑛}, and let M be a non-uniform PPT algorithm. Then

{M(𝑋𝑛)}
c≡ {M(𝑌𝑛)}.

Proof. The proof is by reduction. Let D be a distinguisher. Then construct D′ which, on
input 𝑥 , simulatesD(M(𝑥)). ThenD′ outputs 1 on 𝑥 if and only ifD outputs 1 onM(𝑥),
so

caD (M(𝑋𝑛),M(𝑌𝑛)) = caD′ (𝑋𝑛, 𝑌𝑛) = negl(𝑛)
by the computational indistinguishability assumption. □

Example 1.13 (pseudorandom generators [PS10, Sections 3.2-3.3]). We can use compu-

tational indistinguishability to formalize the notion of pseudorandomness.

Let {X𝑛} be a sequence of spaces, and let {𝑋𝑛} be a sequence of probability distribu-

tions over

⋃X𝑛 . We say that {𝑋𝑛} is pseudorandom for X if there exists a polynomial 𝑝

such that

{𝑋𝑛}
c≡ {X𝑝 (𝑛)},

where the latter is equipped with the uniform distribution. In other words, pseudorandom

ensembles look uniformly random to distinguishers.

For simplicity, we now work over X𝑛 = Z𝑛
2
. Let 𝐺 : Z∗

2
→ Z∗

2
be a deterministic

function. We say 𝐺 is a pseudorandom generator if

• 𝐺 is polynomial-time computable;

• for any 𝑥 , |𝐺 (𝑥) | > |𝑥 |;
• {𝐺 (Z𝑛

2
)} is pseudorandom.

The idea is that 𝐺 gets some input 𝑥 ∈ Z𝑛
2
and produces an output in Z𝑝 (𝑛)

2
which looks

uniformly random to distinguishers if 𝑥 is chosen uniformly at random. The polynomial

𝑝 (𝑛) in the definition of pseudorandomness is now called the expansion factor. It this

sense, pseudorandom generators allow us to “bootstrap” randomness from random draws

even on very small inputs.

As usual, while we have excellent candidates, we have no proof that pseudorandom

generators exist. However, there is a known procedure, due to Håstad et al. [Hås+99], to

turn any one-way function into a pseudorandom generator.

1.1.4 Interactive and Zero-Knowledge Computation
Cryptographic protocols do not occur in a vacuum; instead, they rely on computations

involving multiple parties. We call such situations interactive computations. In general,

a model of interaction depends on the underlying model of computation; this is for in-

stance the case with the popular notion of interactive Turing machines [Gol01, Definition

4.2.1]. As our approach in this chapter has been model-independent, we can only give an

informal discussion of interaction.

1.1. Foundations 9

An interactive computation consists of a finite number of parties, which we think of as

algorithmsA𝑖 , whomay potentially communicate by sendingmessages to each other, and

whose behavior may change in response to messages they receive. An interactive protocol
just consists of descriptions of some interactive algorithms ⟨A1, . . . ,A𝑁 ⟩.

We often think of interactive computations as being indexed by a security parameter
𝑛 ∈ N. Instead of asking each algorithm to be polynomial-time in its inputs, we ask it

to be polynomial in 𝑛, with the stipulation that the inputs themselves are no more than

polynomial in 𝑛, so that each algorithm has time to read its own inputs. Intuitively, the

security parameter represents a “tuning” of the security of the system, so that a bigger

𝑛 incurs greater computational cost but gives stronger security guarantees. Often, the

security parameter is formalized by ensuring that all parties get an extra input of 1
𝑛
at

the start of the computation, as we did in Definition 1.1; we assume this formalization in

every protocol we give here.

At the start of an interactive computation, there is a global input 𝑥 known to all parties,
and each partyA𝑖 may have a private or auxiliary input 𝑥𝑖 known only to itself. We gen-

erally assume that there are known sequences of input spaces X𝑛 and X𝑖𝑛 , such that when

the security parameter is 𝑛, 𝑥 ∈ X𝑛 and 𝑥𝑖 ∈ X𝑖𝑛 . At the end of the computation, each party

may make some output, the sequence of which we denote ⟨A1, . . . ,A𝑁 ⟩(𝑥, 𝑥1, . . . , 𝑥𝑁), so
that party 𝑖’s output is ⟨A1, . . . ,A𝑁 ⟩(𝑥, 𝑥1, . . . , 𝑥𝑁)𝑖 . When any of these algorithms are

potentially probabilistic, we think of this value as a distribution over possible outputs, and

we always assume that the internal randomness of the parties is independent.

Example 1.14. Here is a simple interactive protocol. We have two algorithms, A and

B. The input spaces are XA𝑛 and XB𝑛 ; there is no global input (which means the global

input is just the security parameter 1
𝑛
.) The algorithm A takes its input 𝑥 ∈ XA𝑛 , sends

it to B, and outputs the first message it receives from B. The algorithm B takes its input

𝑦 ∈ XB𝑛 , sends it to A, and outputs the first message it receives from A. Then we have

that ⟨A,B⟩(𝑥,𝑦) = (𝑦, 𝑥).

The view of a party is roughly all of the information it has available to it over the

course of the computation. This includes the global input, its private input, any ran-

dom bits it uses, and all the messages it receives. We denote the view of party 𝑖 by

view
⟨A1,...,A𝑁 ⟩
𝑖

(𝑥, 𝑥1, . . . , 𝑥𝑁). When the algorithms are clear from context, we may omit

the superscript. Importantly, while each private input 𝑥𝑘 is a parameter of each view

view𝑖 , the view does not necessarily include each of these inputs; they are parameters

merely because they may affect the messages received by party 𝑖 .

Example 1.15. In the protocol of Example 1.14,

view
⟨A,B⟩
A (1𝑛, 𝑥,𝑦) = view

⟨A,B⟩
B (1𝑛, 𝑥,𝑦) = {1𝑛, 𝑥,𝑦}.

Suppose that B′ always sends the string 0𝑛 to A, instead of its input. Then

view
⟨A,B′⟩
A (1𝑛, 𝑥,𝑦) = {1𝑛, 𝑥, 0}, view

⟨A,B′⟩
B′ (1𝑛, 𝑥,𝑦) = {1𝑛, 𝑥,𝑦}.

Notice that viewB′ does not include the messages which it sends A.

10 Chapter 1. Cryptography

The running time of an interactive algorithm A is now the function 𝑇A : N → N
which, for any 𝑛, gives the maximum number of “steps” it takesA to halt over any choice

of:

• global input 𝑥 and private input 𝑦 of total length 𝑛 = |𝑥 | + |𝑦 |;
• other algorithms involved in the computation;

• internal randomness ofA and of any other algorithms involved in the computation.

Essentially, whenwe say an algorithm is polynomial-time, wemean it is always polynomial-

time, no matter what. We sometimes assume that each algorithm has a “clock” that it uses

to count the number of steps it has taken and ensure it halts in some fixed polynomial

number of steps.

We can now formalize the idea of a party “learning something” from an interaction.

We say that an interactive protocol ⟨A1, . . . ,A𝑁 ⟩ is zero-knowledge for party 𝑖 if there
exists a non-uniform PPT algorithm S such that for any choice of inputs (𝑥, 𝑥1, . . . , 𝑥𝑁),

S(𝑥, 𝑥𝑖)
c≡ view

⟨A1,...,A𝑁 ⟩
𝑖

(𝑥, 𝑥1, . . . , 𝑥𝑁).

The idea is that the “simulator” S gets only the inputs to A𝑖 and is responsible for pro-

ducing a distribution that is indistinguishable from the actual view of A𝑖 . If they can do

this, thenA𝑖 must not have learned anything that they could not have computed directly

from their inputs.

More often, wewant to consider the situationwhereA𝑖 is supposed to learn something
from the computation, but should not learn anything extra.

Definition 1.16 (zero-knowledge). Let 𝑓 be a function with appropriate domain. An

interactive protocol ⟨A1, . . . ,A𝑛⟩ is zero-knowledge for party 𝑖 relative to 𝑓 if there exists
a (non-uniform PPT) simulator S such that for any choice of inputs (𝑥, 𝑥1, . . . , 𝑥𝑁),

S(𝑥, 𝑥𝑖, 𝑓 (𝑥, 𝑥1, . . . , 𝑥𝑁))
c≡ view

⟨A1,...,A𝑁 ⟩
𝑖

(𝑥, 𝑥1, . . . , 𝑥𝑁).

In the above definition, we are asking that the simulator produces a distribution which

is negligibly close, in the sense of computational indistinguishability, to the actual view.

While this is all that is possible inmany situations in practice, we could ask for the stronger

condition that the produced distribution is identical to the view. We call this notion perfect
or information-theoretic zero-knowledge, and refer to Definition 1.16 as computational
zero-knowledge when we wish to emphasize the distinction.

Example 1.17. We show that the trivial protocol, in which two algorithms A and B do

nothing, is zero-knowledge for B. Our goal is to give a simulator S such that for any

choice of security parameter 𝑛,

S(1𝑛) c≡ view
⟨A,B⟩
B (1𝑛).

Since B never gets sent any messages, its view is just the input 1
𝑛
. We therefore let S

compute the identity, so that the two distributions are both constantly {1𝑛}. This shows
that the trivial protocol is perfect zero-knowledge.

1.1. Foundations 11

Example 1.18. Consider the following protocol: A gets input 𝑥 ∈ Z𝑛
2
, which it then sends

to B. To show this is not zero-knowledge for B, we must show that for any simulator S,
there exists a choice of input 𝑥 and a distinguisher D which distinguishes S(1𝑛) from
viewB (1𝑛, 𝑥) = {1𝑛, 𝑥} with non-negligible probability.

Let S be fixed. If S does anything other than outputting 1
𝑛
and some 𝑦 ∈ Z𝑛

2
, then we

will be able to distinguish it syntactically. We may therefore safely assume that S outputs

(1𝑛, 𝑦) for some (potentially random) choice of 𝑦. For each 𝑛, now choose 𝑥 such that

Pr[𝑦 = 𝑥] ≤ 2
−𝑛
, which is possible by the pigeonhole principle. Let D output 1 on input

{1𝑛, 𝑥}, and 0 otherwise. Then

Pr[D(S(1𝑛)) = 1] = Pr[𝑦 = 𝑥] ≤ 2
−𝑛,

while

Pr[D(viewB (1𝑛, 𝑥)) = 1] = 1.

Since |1 − 2−𝑛 | is not negligible, the protocol is not zero-knowledge for B.

1.1.5 Adversaries and the Real-Ideal Paradigm

Zero-knowledge is a surprisingly general tool for formalizing security definitions, but in

some cases it is not enough. For instance, we may want to verify that protocols for elec-

tronic coin-flips are fair: in this case, the issue is not that the parties may learn something

extra, but that they may be able to unduly influence the outcome of the computation. The

general approach taken in the literature is to define security on an ad-hoc basis for each

such task by enumerating the properties we want the protocol to have and formalizing

them as adversarial games. We will take a more systematic approach, sometimes called

the real-ideal paradigm.

The idea is to define an ideal protocol—also called an ideal functionality—which repre-

sents the desired behavior of the cryptosystem. The protocol under study—the real proto-
col—is then supposed to emulate the ideal protocol, in the sense that its outcomes should

be computationally indistinguishable from the outcomes of the ideal protocol. The sub-

tlety here is our use of the term outcome; which necessarily looks different for different

protocols: it may just be the information learned by a party, in which case we recover

zero-knowledge, it may be some function of the party’s outputs, or it may be something

else altogether. We will see several different examples of this in Section 1.2, but the im-

portant point is that to define security in this paradigm requires both a definition of the

ideal protocol and of the data to be compared.

Unlike in the case of zero-knowledge, where we only cared about what parties could

learn from the protocol assuming it was executed correctly, in this setting we also want

to discuss security against malicious behavior, in which one or more parties deliberately

try to sabotage the outcome of the protocol. We often refer to these parties as the adver-
saries, and allow them to be non-uniform even when ordinary parties in the protocol are

uniform. Since a protocol is not secure if even one possible attack is likely to succeed,

we say that a protocol is secure in the presence of malicious adversaries if for any choice

of algorithms taking over some fixed number of parties, the outcomes of the protocol are

12 Chapter 1. Cryptography

indistinguishable from the ideal. Again, we will see examples of this notion in the next

section.

In contrast, sometimes we do want to talk about a protocol being zero-knowledge

without dealing with arbitrary adversarial behavior. In this case, we use the term semi-
honest adversaries, which informally refers to adversaries which follow the prescriptions

of the protocol, but attempt to learn as much as they can within those bounds. There are

several other notions of adversarial strength considered in the literature—for instance,

adaptive vs. static adversaries [Cra+99], Byzantine adversaries [LLR04], and “coercible”

parties [CGP15]. We do not explore all these models here.

1.2 Cryptographic Problems

1.2.1 Encryption
Much of the machinery defined in the previous section was originally developed in the

1970s and 80s for the purpose of analyzing encryption problems, culminating in the work

of Goldwasser and Micali [GM82]. The idea of an encryption problem is that a party

Alice has a message𝑚 in the message spaceM𝑛 which they want to send to Bob, but any

message they send to Bob must also be sent to the eavesdropping Eve. In the simpler

shared-key encryption problem, which we consider here, Alice and Bob share some secret

key 𝑘 from the key space K𝑛 , which is unknown to Eve.

Definition 1.19 (shared-key encryption scheme). Let {M𝑛} and {K𝑛} be sequences of

sets. An (M,K)-shared-key encryption scheme is an interactive protocol consisting of

three interactive algorithms A, B, and E, where:

• the global input is 1
𝑛
, the security parameter;

• A gets a uniform random key 𝑘 ∈ K𝑛 and a message𝑚 ∈ M𝑛 as private input;

• B gets the same
5
key 𝑘 as private input;

• E gets no private input;

• A and B only send messages to each other if they also send the message to E.

A shared-key encryption scheme is correct if B outputs𝑚 at the end of the computa-

tion. A shared-key encryption scheme is secure if it is zero-knowledge for E; explicitly, if
there exists a simulator S such that for any choice of security parameter 𝑛 and message

𝑚,

S(1𝑛) c≡ view
⟨A,B,E⟩
E (1𝑛, 𝑘,𝑚),

where the randomness of the second distribution is over both the randomness of the al-

gorithms and uniform random choice of 𝑘 .

5
Notice that this definition includes the stipulation thatA and B share a uniform random key as input,

which is not directly possible using themachinery of Section 1.1.4. Oneway to formalize this notion is to add

a fourth machine G (the “generator”), which can message A and B freely (but not receive messages from

them), whose job is to generate the key and send it to both parties. For our purposes, the important point is

that while the input𝑚 is seen as a parameter of the system which can be controlled in indistinguishability

proofs, the input 𝑘 is instead always randomly generated.

1.2. Cryptographic Problems 13

The point is that the eavesdropper should learn nothing from the interaction, while

the intended recipient should learn the message.

Example 1.20. We can construct both a secure-but-not-correct and a correct-but-not-

secure encryption scheme using work already done.

• For a secure-but-not-correct scheme, simply have each machine do nothing. The

security proof is exactly the same as in Example 1.17.

• For a correct-but-not-secure scheme, haveA send𝑚 to B (and therefore also to E)
as a message, and have B output that message. The insecurity proof is exactly the

same as in Example 1.18.

Example 1.21 (the one-time pad). We now give a secure and correct shared key encryp-

tion scheme, called the one-time pad. Let {𝐺𝑛} be a sequence of finite additive groups
6

such that |𝐺𝑛 | = Ω(2𝑛), for instance 𝐺𝑛 = Z𝑛
2
. We work over M𝑛 = K𝑛 = 𝐺𝑛 . Given

a message 𝑚 and key 𝑘 , A computes 𝑐 = 𝑚 + 𝑘 , which it sends to B (and E). B then

computes 𝑐 − 𝑘 , which it outputs.

Correctness of this scheme is immediate, as B outputs 𝑐 − 𝑘 = 𝑚 + 𝑘 − 𝑘 = 𝑚. To

prove security, our goal is to construct a simulator S such that S(1𝑛) is indistinguishable
from viewE (1𝑛, 𝑘,𝑚) = {1𝑛,𝑚 + 𝑘}. Because addition by𝑚 is a bijection, and 𝑘 is chosen

uniformly at random, the distribution {𝑚 + 𝑘} is just a uniform random sample from 𝐺𝑛 .

As such, we simply letS(1𝑛) draw𝑔 uniformly at random from𝐺𝑛 and output {1𝑛, 𝑔}. This
is again a perfectly-secure encryption scheme, since the two distributions are identical.

Because the security is perfect, we don’t need the asymptotics, so the one-time pad is

more commonly defined on a fixed group 𝐺 , usually Z𝑚
2
for some fixed𝑚.

Example 1.22 (the bootstrap one-time-pad). One disadvantage of the one-time pad is

that the key must be drawn from the same space as the message. We now show how to

rectify this, assuming a pseudorandom generator (Example 1.13) G with expansion factor

𝑝 is available. The idea is to use the pseudorandom generator to expand a short key into

a longer one.

The protocol is as follows. We letK𝑛 = Z𝑛
2
andM𝑛 = Z𝑝 (𝑛)

2
. Given amessage𝑚 ∈ Z𝑝 (𝑛)

2

and a key 𝑘 ∈ Z𝑛
2
, A first computes G(𝑘) to get a key 𝑘′ ∈ Z𝑝 (𝑛)

2
. It then sends 𝑐 = 𝑚 + 𝑘

to B. Similarly, B computes 𝑘′ and then 𝑐 −𝑘′, which it outputs. Since G is deterministic,

both A and B get the same value for 𝑘′, and so the protocol is correct.

Security can be shown by a reduction to the hardness assumption entailed by pseu-

dorandomness of G, but an easier route is available. By definition of pseudorandomness,

the distributions {G(Z𝑛
2
)} and {Z𝑝 (𝑛)

2
} are computationally indistinguishable. To obtain

𝑐 in this protocol and in the one-time pad, we perform the same computation on these

distributions—merely adding the fixed message𝑚. As such, by Proposition 1.12 the view

of E in this protocol is indistinguishable from the view of E in the one-time pad. Now

we obtain the desired result by security of the one-time pad and transitivity of indistin-

guishability.

6
We also want that {𝐺𝑛} is efficiently sampleable, so that it is possible to generate an element from it

uniformly at random in polynomial time.

14 Chapter 1. Cryptography

1.2.2 Interactive Function Computation
Suppose we are given a (potentially stochastic) series of functions

𝑓 : 𝑋1 × · · · × 𝑋𝑁 → 𝑌1 × · · · × 𝑌𝑁 .

Each such function yields the following cryptographic problem
7
:

Can 𝑁 parties, each given a private input 𝑥𝑖 ∈ 𝑋𝑖 , work together so that the

𝑖th party outputs the value 𝑓𝑖 (𝑥1, . . . , 𝑥𝑛)?

Here, 𝑓𝑖 is the projection pr𝑖 ◦𝑓 . In particular:

Definition 1.23. An interactive protocol ⟨A1, . . . ,A𝑁 ⟩ computes the function 𝑓 if for any
choice of inputs 𝑥1, . . . , 𝑥𝑁 ,

⟨A1, . . . ,A𝑁 ⟩(𝑥1, . . . , 𝑥𝑁) = 𝑓 (𝑥1, . . . , 𝑥𝑁),

where if 𝑓 is stochastic the equality should be interpreted in the distributional sense.

Example 1.24. The protocol of Example 1.14 computes the function 𝑓 (𝑥,𝑦) = (𝑦, 𝑥).

On the other hand, there are several possible notions of security in this setting, roughly

following the lines discussed in Section 1.1.5. We first consider the more straightforward

semi-honest case, in which we ask that no party should learn anything from the compu-

tation other than the value they are intended to output.

Definition 1.25. A protocol ⟨A1, . . . ,A𝑁 ⟩ securely computes the function 𝑓 in the presence
of semi-honest adversaries if it computes 𝑓 and it is zero-knowledge for each 𝑖th party

relative to 𝑓𝑖 .

Example 1.26. Consider the following protocol for 𝑓 (𝑥,𝑦, ∗) = (∗, ∗, 𝑥𝑦): the first two

algorithms each send their inputs two the third, which computes and outputs the prod-

uct. This protocol is not secure in the presence of semi-honest adversaries, because the

third party learns the two factors, not just the product; this insecurity can be proved very

similarly to Example 1.18.

On the other hand, consider the following protocol for 𝑓 (𝑥,𝑦) = (∗, 𝑥𝑦): the first al-
gorithm sends 𝑥 to the second, which computes and outputs the product. This protocol

is secure in the presence of semi-honest adversaries. The simulator for the second algo-

rithm, which gets its input 𝑦 and output 𝑥𝑦, is responsible for producing a distribution

indistinguishable from {𝑥,𝑦}; it can do this by computing 𝑥𝑦/𝑦.

Example 1.27 (oblivious bit-transfer). The oblivious bit-transfer problem is as follows.

Alice has two bits 𝑏1, 𝑏2 ∈ Z2, and Bob has a query 𝜎 ∈ {1, 2}. The goal is for Bob to

learn the appropriate bit from Alice, without revealing which bit they asked for. We can

formalize this using Definition 1.25: the problem is to securely compute

𝑓 : Z2

2
× {1, 2} → {∗} × Z2, ((𝑏1, 𝑏2), 𝜎) ↦→ (∗, 𝑏𝜎)

7
Here we need to assume that there is a canonical grading on each input set, for instance given by

the length of a bitstring, so that each 𝑋𝑖 can also be thought of as a sequence of sets X𝑖
𝑛 in the style of

Section 1.1.4.

1.2. Cryptographic Problems 15

in the presence of semi-honest adversaries. While the solution is outside our scope, this is

possible (under standard complexity-theoretic assumptions) via a protocol originally due

to [EGL85].

The situation with malicious adversaries is much more complicated, but we will not

need all the details here; they can be found in, for instance, [Lin17, Section 4].

1.2.3 Zero-Knowledge Proof

In an interactive proof, one party—the prover—tries to convince the other—the verifier—
that some statement is true. We generally consider proofs of membership predicates over

fixed sets (called languages in this context), so that the prover is trying to convince the

verifier that some global input 𝑥 is in a fixed set L. The key point is that the prover

generally has some computational advantage over the verifier, so that the verifier cannot

simply reproduce all the steps taken by the prover.

Informally, there are two correctness properties we want an interactive proof system

to have. It should be sound: when given an input 𝑥 ∈ L, the verifier should except with

high probability. It should also be complete, which informally means that no adversarial

machine should be able to convince the verifier to accept an input not in L except with

low probability. Formally:

Definition 1.28 (interactive proof system). Let L be a fixed language. An interactive
proof system for L consists of an algorithm P and a PPT algorithmV , such that:

• (soundness) for each 𝑥 ∈ L,

Pr[⟨P,V⟩(𝑥)V = 1] > 2

3

;

• (completeness) for each 𝑥 ∉ L and each algorithm P′,

Pr[⟨P′,V⟩(𝑥)V = 1] < 1

3

.

Once we achieve any probability of success greater than
1

2
, we can repeat the protocol

to achieve any constant probability of success. It is standard to choose
2

3
as the desired

bound for such cases.

Example 1.29 (graph non-isomorphism [Gol01, Section 4.2.2]). We give an interactive

proof system for the problem of graph non-isomorphism8
, which is formalized as the lan-

guage

GNI = {(𝐺1,𝐺2) : 𝐺1 and 𝐺2 are non-isomorphic finite graphs}.
8
Since we do not know whether graph non-isomorphism is in NP, the reader may now wonder what the

computational strength of interactive proof is. It turns out that IP, the class of languages with interactive

proof, equals PSPACE, the class of languages whose membership predicates can be computed in polynomial

space. This result was first proven by [Sha92].

16 Chapter 1. Cryptography

The idea is that the verifier will construct a random graph isomorphic to one of the chosen

graphs, and the prover will have to guess which one. If the graphs are non-isomorphic,

then it should always be able to do so; if they are, it can only do so with probability
1

2
.

The algorithms get a pair of graphs (𝐺1,𝐺2) as shared input; we let 𝐺1 = (𝑉1, 𝐸1) and
similarly for 𝐺2. The verifier uniform-randomly chooses 𝜎 ∈ {1, 2} and a relabeling of

𝐺𝜎 . In particular, it uniform-randomly chooses a bijection 𝜋 : 𝑉𝜎 → {1, . . . , |𝑉𝜎 |} and
generates the graph

𝐺′𝜎 = ({1, . . . , |𝑉𝜎 |}, {(𝜋 (𝑣), 𝜋 (𝑤)) : (𝑣,𝑤) ∈ 𝐸𝜎 }),

which it sends to the prover. The prover, which is unbounded, can then check whether

𝐺′𝜎 � 𝐺1 or 𝐺′𝜎 � 𝐺2 and send the result to the verifier; if both hold, then it sends a

random bit. The verifier repeats the experiment again, outputting 1 if the prover guessed

right both times, and 0 otherwise.

To show soundness, note that if𝐺1 � 𝐺2, then the prover will always guess correctly,

in which case the verifier outs 1 with probability 1.

To show completeness, note that 𝐺′𝜎 is a uniform random draw from

{𝐺 = (𝑉 , 𝐸) : 𝐺 � 𝐺𝜎 ,𝑉 = {1, . . . , |𝑉𝜎 |},

i.e. from the isomorphism class of 𝐺𝜎 with vertex set {1, . . . , |𝑉𝜎 |}. Since 𝐺1 and 𝐺2 have

identical isomorphism classes and the same number of vertices, this implies that the dis-

tribution of 𝐺′𝜎 is independent of 𝜎 . Now let P′ be any algorithm which is given 𝐺1, 𝐺2,

and 𝐺′𝜎 and must guess 𝜎 . By independence, we have that

Pr[P′(𝐺′𝜎) = 𝜎] =
∑︁

𝜏∈{1,2}
Pr[P′(𝐺′𝜎) = 𝜏 and 𝜎 = 𝜏]

=
∑︁

𝜏∈{1,2}
Pr[P′(𝐺′𝜎) = 𝜏] Pr[𝜎 = 𝜏]

=
Pr[P′(𝐺′𝜎 ∈ {1, 2})]

2

≤ 1

2

;

since the experiment repeats twice, we get a probability of
1

4
< 1

3
, as desired.

In cryptography, we are especially concerned with zero-knowledge proofs, which are

meant to reveal no information other than the truth of the statement under proof. We will

need something slightly stronger than for multi-party computation: because this protocol

involves the prover giving information in response to queries from the verifier (such as the

query graph𝐺′𝜎 in Example 1.29), wewill need to ensure that no verifier can learn anything

extra from the prover, even if they give different queries than the protocol prescribes.

Definition 1.30 (zero-knowledge proof). An interactive proof system (P,V) is honest-
verifier zero-knowledge it is zero-knowledge forV . It is semi-honest-verifier zero-knowledge,

1.3. Composition 17

or just zero-knowledge, if for each non-uniform PPT V′, the protocol ⟨P,V′⟩ is zero-

knowledge forV′. It is black-box zero-knowledge if the simulator can queryV′ but must

be defined independently of it
9
.

The complexity of zero-knowledge proof is well-studied. If one-way functions exist,

then every problem in NP has a zero-knowledge proof [GMW91]. In fact, rather remark-

ably, under the same assumption any language that admits an interactive proof admits a

zero-knowledge proof [Ben+90].

Example 1.31. The protocol of Example 1.29 is an honest-verifier zero-knowledge proof.

1.3 Composition

1.3.1 The Issues at Hand
We now wish to consider whether our security definitions are closed under composition

of protocols. There are many different issues to consider in stating such a composition

theorem, including:

1. What kinds of protocols are being composed? Our security definitions do not cap-

ture security of arbitrary interactive processes, so either wewill need a substantially

more general definition or we will need to limit our composition theorem to a spe-

cific class of protocols.

2. What does it mean to compose these protocols? It is not immediately clear how to

compose arbitrary interactive algorithms.

3. What kind of composition is allowed? In particular, we can consider sequential
composition, in which only one protocol is “running” simultaneously, or parallel
composition, in which many protocols may be running simultaneously. To formally

state a parallel composition theorem, we need to either specify a scheduling model
and deal with low-level issues like atomicity, or find someway to abstract over these

details.

4. What kind of security is being preserved? Given a security definition for the compo-

nent protocols, we need some say to derive the security definition for the composite

protocol.

5. What kinds of adversaries does the theorem handle? Composition theorems may

look very different for security against uniform and non-uniform adversaries, for

instance—these subtle issues can lead to very different results.

6. What protocols are we allowed to compose with? We could be allowed to com-

pose with arbitrary protocols, which might not even be secure, or only with other

protocols we already know are secure.

9
There appear to be several distinct choices in the literature for naming conventions, for the compu-

tational strength of the prover, and for the level of honesty of the verifier. Our naming convention fol-

lows [Vad07]; a good survey of various definitions is [GO94, Section 3].

18 Chapter 1. Cryptography

7. How many times we can compose—for instance, must it be constant in the security

parameter?

As these questions demonstrate, composition theorems are really quite difficult to

state. However, even without a formal theorem in mind, we can make a few concrete

observations.

In regards to Question 6, we need to have some kind of idea of “independence of state”

between two protocols before we can compose them. For instance, we certainly should

not be allowed to compose the one-time pad with a protocol that publicly broadcasts the

key.

In regards to Question 7, we should at best expect to be able to compose polynomially

many protocols in the security parameter. This is in part for complexity reasons—a poly-

time Turing machine cannot simulate super-polynomially many protocols—but there is

also a security explanation: as a consequence of Proposition 1.11, we should only expect

to be able to compose polynomially many computationally indistinguishable distributions

before losing the indistinguishability.

We do not make attempt to give a comprehensive review of the composition theorems

or counterexamples in the literature. Instead, our goal is to chart a motivating path to-

wards the theory of universal composability, and then give a sufficiently detailed overview

of that theory to equip the reader to compare it to the cryptographic models we will study

in Chapter 3.

1.3.2 Composing Interactive Function Computations

Possibly the easiest non-trivial composition theorem to state is for sequential composition

of interactive function computations, but already in this case we will run into several

fundamental issues.

Suppose we have two 𝑁 -party protocols ⟨A1, . . . ,A𝑁 ⟩ and ⟨B1, . . . ,B𝑁 ⟩ which se-

curely compute the 𝑁 -party functions 𝑓 : 𝑋1 × · · · × 𝑋𝑁 → 𝑌1 × · · · × 𝑌𝑁 and 𝑔 :

𝑌1 × · · · × 𝑌𝑁 → 𝑍1 × · · · × 𝑍𝑁 in the presence of semi-honest adversaries. We wish

to use this data to construct a composite protocol for the composite function 𝑔 ◦ 𝑓 . The
natural choice is to have the parties first run the protocol for 𝑓 , then run the protocol for

𝑔. Thus, we can state the following claim:

Claim1.32. Suppose {𝑓 𝑖 : 𝑋 𝑖
1
×· · ·×𝑋 𝑖

𝑁
→ 𝑋 𝑖+1

1
×· · ·×𝑋 𝑖+1

𝑁
, 1 ≤ 𝑖 ≤ 𝐾} is a finite sequence of

functions which are securely computable in the presence of semi-honest adversaries. Then the
composite 𝑓 = 𝑓 𝐾 ◦ · · ·◦ 𝑓 1 is securely computable in the presence of semi-honest adversaries.

Proof attempt. For each 𝑖 , let Π𝑖 = ⟨A𝑖
1
, . . . ,A𝑖

𝑁
⟩ be a protocol which securely computes

𝑓 𝑖 in the presence of semi-honest adversaries. Form a new protocol Π which performs

each of the Π𝑖 in sequence. Correctness is immediate, since the correctness of each Π𝑖
implies that Π computes each step of the composite in turn.

The proof of security is by reduction to the security of the Π𝑖 . By induction, it suffices

to consider the case 𝐾 = 2. Suppose that the composite Π does not securely compute

𝑓 2 ◦ 𝑓 1. Without loss of generality, suppose that the composite is not zero-knowledge for

1.3. Composition 19

party 1. Then for any S, there exists some non-uniform PPT D which distinguishes, for

any choice of inputs 𝑥𝑖 ∈ 𝑋 1

𝑖 ,

S(𝑥1, 𝑓 21 (𝑓 1(𝑥1, . . . , 𝑥𝑁))) and view
Π
1
(𝑥1, . . . , 𝑥2). (1.1)

All this works, but we run into issues when we attempt to construct a simulator which

contradicts this assumption. LetS1

𝑖 andS2

𝑖 be the simulators which witness security of Π1

and Π2 with respect to party 𝑖 . We would like to construct a simulator S, which combines

the simulated views of party 𝑖 in both parts of the computation. The issue is that, in order

to fit the form of (1.1), S should get only (𝑥1, 𝑓 21 (𝑓 1(𝑥1, . . . , 𝑥𝑁))) as input. However, to
be able to run S1

1
, it needs 𝑓 1

1
(𝑥1, . . . , 𝑥𝑁), which we have no way to obtain.

I am not aware of a direct way to repair this proof. Instead, to avoid the issue, we need

the structure of the composite protocol to mirror the structure of the reduction: there

should be some “outermost” protocol which handles calls to the sub-protocols, just as we

need to make an outermost simulator which calls the sub-simulators. The right tool for

the job is the oracle algorithm.

Definition 1.33 (oracle algorithms; oracle protocols). An oracle algorithm is an algorithm

A equipped with a “slot” for an oracle O, to which it can make queries 𝑥 and receive

responses O(𝑥). WewriteAO to refer to the oracle-algorithmA equippedwith the specific

oracle O.
An oracle protocol is a protocol ⟨A1, . . . ,A𝑁 ⟩ with a slot for an oracle O, where

each A𝑖 may write queries 𝑥𝑖 , and if each machine does so, they each receive outputs

O(𝑥1, . . . , 𝑥𝑁)𝑖 . We write ⟨A1, . . . ,A𝑁 ⟩O .
Let 𝑓 : 𝑋1 × · · · × 𝑋𝑁 → 𝑌1 × · · · × 𝑌𝑁 be a function. An 𝑓 -oracle is an oracle which,

when queried with 𝑥1, . . . , 𝑥𝑛 , responds with 𝑓 (𝑥1, . . . , 𝑥𝑁). We overloadingly write 𝑓 to

refer to an 𝑓 -oracle.

The idea is to make an oracle protocol Π which, when instantiated with an 𝑓 -oracle,

securely computes 𝑔. Then if we have a protocol for securely computing 𝑓 , we will show

that we can substitute it for the oracle in Π. In particular, while we will not be precise

about what secure oracle computation means, it is important that the view of an oracle

algorithm includes its queries and responses.

Definition 1.34 (oracle reduction). Let 𝑓 and 𝑔 be functions. Then 𝑔 securely oracle-
reduces to 𝑓 in the presence of semi-honest adversaries if there exists an oracle protocol

⟨A1, . . . ,A𝑁 ⟩ such that ⟨A1, . . . ,A𝑁 ⟩ 𝑓 securely computes 𝑔 in the presence of semi-

honest adversaries.

Theorem 1.35 ([Gol01, Theorem 7.3.3]). Suppose 𝑔 securely reduces to 𝑓 in the presence of
semi-honest adversaries, and 𝑓 is securely computable in the presence of semi-honest adver-
saries. Then 𝑔 is securely computable in the presence of semi-honest adversaries.

Proof sketch. Let Π𝑔 = ⟨A1, . . . ,A𝑁 ⟩ be an oracle protocol such that ⟨A1, . . . ,A𝑁 ⟩ 𝑓 se-
curely computes 𝑔 in the presence of semi-honest adversaries, and let Π𝑓 = ⟨B1, . . . ,B𝑁 ⟩
be a protocol which securely computes 𝑓 in the presence of semi-honest adversaries. We

20 Chapter 1. Cryptography

construct a new protocol Π which runs Π𝑔, but whenever the oracle is queried, it instead
replaces the oracle with a complete run of Π𝑓 . Correctness of Π is immediate from its

construction; we show security by a reduction.

Let S𝑔
𝑖
simulate the view of party 𝑖 in Π

𝑓
𝑔 , and let S 𝑓

𝑖
simulate the view of party 𝑖 in

Π𝑓 . We construct a simulator S𝑖 for the view of party 𝑖 in Π. Since the inputs to Π
𝑓
𝑔 are the

same as to Π, we can immediately run S𝑔
𝑖
to obtain the view of party 𝑖 in the computation

Π
𝑓
𝑔 , which in particular includes the queries and responses of the oracle. We can then

pass these queries and responses to Π𝑓 , obtaining a view of each of the invocations of the

sub-protocol.

To show the this simulator achieves the necessary indistinguishability result, we work

in two steps. First, the output of S𝑖 is indistinguishable from the view of party 𝑖 in Π with

the sub-protocol invocations are replaced with the simulated views; we prove this by the

security of Π𝑓 , since otherwise appending the view from Π
𝑓
𝑔 would distinguish the view

from Π𝑓 with its simulated counterpart. Similarly, this latter distribution is indistinguish-

able from the view of party 𝑖 in Π without any such replacement, this time by security of

Π
𝑓
𝑔 . Filling in these details completes the proof. □

A few remarks on this proof are warranted. First, it fundamentally relies on the semi-

honesty of the adversaries, since it means that the execution of the sub-protocols is com-

pletely independent from anything other than their inputs. If the adversaries could behave

maliciously, and thus use information learned in the larger protocol to affect runs of the

sub-protocols, then the main simulator would be unable to properly invoke the simulator

for the sub-protocols.

Second, these techniques seem completely unable to handle parallel composition. The

issue is that oracle queries are in some sense immediate—the assumption is that everything

else pauses while the oracle does its work. It is much more difficult to handle parallelism,

or even more strongly, to handle concurrency, which may in particular be asynchronous.

Third, if we want to handle protocols other than function computations, we will need

a more robust notion of composition of ideal functionalities—this proof is tied to the easy-

to-understand structure of function computation.

The goal of universal composability is to resolve these issues, but first wewill explicitly

give an example wherein parallel composition fails.

1.3.3 A Counterexample to Parallel Composition

Before giving the counterexample, we briefly discuss sequential composition of zero-

knowledge proofs, which is quite subtle. When the definitions are as given in Defini-

tion 1.30, black-box zero knowledge proofs do compose in sequence [GO94]. On the other

hand, if we change the definitions so that both the simulator of Definition 1.16 and the

adversarial verifier of Definition 1.30 are required to be uniform PPT, then computational

zero-knowledge does not compose [GK96]. However, if under the same definition we

require that the prover is in NP, then uniform computational zero-knowledge proofs do

compose in sequence up to a constant number of times; but if the distinguishers in the

definition of computational indistinguishability are required to be uniform, then sequen-

1.3. Composition 21

tial composition again fails [BV10]. There are a huge number of variations to consider

and I believe there are many definitions for which the question of sequential composition

is still open.

For parallel composition, the situation is much simpler: we give an argument due

to [GK96] that zero-knowledge proofs do not compose in parallel. The idea of the coun-

terexample is as follows. In proof A, the prover poses a randomly chosen computationally

intractable challenge to the verifier, and then gives the verifier knowledge if and only if

the verifier can solve the challenge. This proof is zero-knowledge because PPT verifiers

can solve the challenge only negligibly often. In proof B, the verifier poses a challenge to

the prover, which the prover answers. The trick is to choose a class of challenges whose

answers are pseudorandom, so that the answer to the challenge on its own does not carry

knowledge. However, when proof A and proof B are run together in parallel, the verifier

can take the challenge it gets in proof A, get an answer in proof B, and that use that to

get knowledge from the prover in proof A.

The difficulty in formalizing this is to find a class of challenges which are computa-

tionally intractable, in that PPT algorithms solve them with negligible probability; zero-

knowledge, in that answers look pseudorandom; and decidable, in that unbounded algo-

rithms can answer challenges and check answers. Our challenges will be phrased as sets:

for each security parameter 𝑛, we will agree to some set of sets 𝑆𝑛
1
, . . . , 𝑆𝑛

2
𝑛 ⊆ {0, 1}𝑄 (𝑛) ,

where 𝑄 is a polynomial. A challenge looks like a value 𝑖 ∈ 1, . . . , 𝑄 (𝑛), and a solution is

a value 𝑠 ∈ 𝑆𝑛𝑖 . We now formalize our desiderata as follows.

Definition 1.36. A non-uniform ensemble is a sequence {𝑆𝑛}, where for each 𝑛, 𝑆𝑛 =

{𝑆𝑛
1
, . . . , 𝑆𝑛

2
𝑛 } is a set of 2𝑛 sets. A non-uniform ensemble is:

• polynomially-sized if there exists a polynomial 𝑄 such that for each 𝑛 and 𝑖 , 𝑆𝑛𝑖 ⊆
{0, 1}𝑄 (𝑛) ;

• pseudorandom if for each 𝑛 and 𝑖 , 𝑆𝑛𝑖 is pseudorandom (in the sense of Example 1.13);

• decidable if there exists an algorithm which, on input (𝑛, 𝑖), outputs the elements of

𝑆𝑛𝑖 and then halts;

• evasive if for any non-uniform PPT algorithm A,

Pr

𝑖∈{1,...,2𝑛}
[A(𝑖) ∈ 𝑆𝑛𝑖] = negl(𝑛).

Theorem 1.37 ([GK96, Theorem 3.2]). There exists a polynomially-sized, pseudorandom,
decidable, evasive non-uniform ensemble.

Now the actual construction of the counterexample is relatively straightforward. Let

𝑆 be the ensemble from Theorem 1.37 and 𝑄 the size polynomial. Let 𝐾 be a computable

predicatewhich is knownnot to be in BPP; such things exist by the time hierarchy theorem

from complexity theory. We will give two zero-knowledge proofs for the language {0, 1}∗.
Proof A goes as follows: on input 𝑥 ∈ {0, 1}𝑛 , P𝐴 chooses 𝑖 ∈ {1, . . . , 2𝑛} uniformly

at random, which it sends to V𝐴. Next, V𝐴 chooses 𝑠 ∈ {0, 1}𝑄 (𝑛) uniformly at random,

which it sends to P𝐴. If 𝑠 ∈ 𝑆𝑛𝑖 , P𝐴 sends 𝐾 (𝑥) to V𝐴. Then V𝐴 outputs 1. This proof is

zero-knowledge because the probability that any cheatingV′
𝐴
sends an 𝑠 ∈ 𝑆𝑛𝑖 is negligible,

so the probability it learns 𝐾 (𝑥) is negligible.

22 Chapter 1. Cryptography

Proof B goes as follows: on input 𝑥 ∈ {0, 1}𝑛 , V𝐵 chooses 𝑖 ∈ {1, . . . , 2𝑛} uniformly

at random, which it sends to P𝐵 . Next, P𝐵 sends 𝑠 ∈ 𝑆𝑛𝑖 to V𝐵 . Then V𝐵 outputs 1. This

proof is zero-knowledge because 𝑆𝑛𝑖 is pseudorandom, so the simulator can just output a

uniform random value and by definition of pseudorandomness no distinguisher can tell

whether it is seeing that random value or the value from 𝑆𝑛𝑖 .

However, in the parallel composition, the verifier can wait to send 𝑖 until it receives

the 𝑖 from P𝐴. Then, when it gets back 𝑠 ∈ 𝑆𝑛𝑖 from P𝐵 , it can send 𝑠 to P𝐴 and get back

𝐾 (𝑥), and hence it learns 𝐾 (𝑥) with probability 1.

Under computational hardness assumptions, Theorem 1.37 can be extended to, for

instance, evasive ensembles which are decidable in NP, and hence under such assumptions

zero-knowledge proofs with NP provers also do not compose in parallel.

As a consequence of this construction, it is clear that we need more technology to

handle parallel composition in any reasonable way. By far the most popular attempt to

do so is universal composability.

1.3.4 Universal Composability
In Section 1.3.2, we identified three critical issues with generalizing the proof of Theo-

rem 1.35: we need to handle malicious adversaries which can forward their views to each

other; we need to handle parallel composition during which other protocols can run; and

we need a very general way to describe composition and security of a large class of com-

putational protocols. Universal composability (UC), due to Ran Canetti [Can00; Can20],

resolves all of these.

The single big idea of UC is to strengthen the notion of emulation required in the

real-ideal paradigm. Whereas our formulations of simulation security require only that

by the end of the computation the real protocol produces an output indistinguishable from

the ideal protocol, in UC, this indistinguishability must hold throughout the computation.

Intuitively, we should expect this to be strong enough to allow us to prove a parallel

composition theorem, because in particular the other computationwe are composingwith

will be unable to distinguish our protocol from the ideal. In this section, we will sketch

some of the key tools used to make this formal, without attempting to be fully formal

ourselves.

In a UC proof, an algorithm called the environment represents all the other compu-

tational processes happening along with the protocol under study. The environment is

also responsible for giving inputs to parties in a protocol. Ultimately, the environment is

also the distinguisher, responsible for attempting to determine between the real or ideal

protocol. If it cannot do so, then no other protocol is able to do so, so in particular the

security guarantees will hold no matter what else is going on. In this way, environments

abstract over a lot of the complexity in ordinary cryptographic definitions.

Adversarial behavior is somewhat complicated in UC. In addition to the environment,

there is an algorithm called the adversary which may write to the backdoor tapes of all
the parties involved in the protocol. The protocol is responsible for specifying how the

parties should behave in response to messages written on their backdoor tapes.

When 𝜋 is a protocol and A and E are algorithms, we write exec𝜋,A,E for the output
of E after an interactive computation with all the algorithms in 𝜋 and with the adversary

1.3. Composition 23

A. A protocol 𝜋 UC-emulates another protocol 𝜙 if for any adversary A there exists a

simulator S such that, for any environment E,

exec𝜋,A,E
c≡ exec𝜙,S,E .

The idea is that E is trying to output a guess of whether it is interacting with 𝜋 or 𝜙 ; it

should be able to guess right only negligibly better than half of the time.

We need a way to express ideal protocols for general cryptographic resources; UC calls

these ideal functionalities. An ideal protocol for a functionality essentially consists of an

algorithm F , which receives its inputs from some “dummy parties” and then sends them

the correct outputs back. In order to work with more than just function computation, F
is also constantly talking to the adversary, and so can simulate functionalities like public

commitments that do not show up in a function signature. A protocol UC-realizes the
functionality F if it UC-emulates the ideal protocol for F .

The next issue is a formal notion of composition. This should look like the “oracle sub-

stitution” construction from the proof of Theorem 1.35, but handle more general forms

of composition than the sequential composition implied by the oracle reductions. Pick

a protocol 𝜋 and a subset 𝜌 of the parties involved in 𝜋 . Pick another protocol 𝜙 such

that there is an injective map from the parties in 𝜌 to those in 𝜙 . Then the protocol 𝜋𝜌→𝜙

replaces 𝜌 with 𝜙 , wiring up the communication with the rest of 𝜋 according to the injec-

tion (note that 𝜙 may have more machines than 𝜌 ; these do not talk to the other parties

in 𝜋). This is called the universal composition operation. It takes rather a lot of work to

make this substitution operation precise—for instance, there is a very technical compat-

ibility condition which essentially asks that the interfaces of 𝜙 and 𝜌 are “functional”, in

the intuitive sense that they only interact with the rest of the protocol via their inputs

and outputs (and maybe as a result of corruption). In [Can20], such protocols are called

subroutine respecting.

Theorem 1.38 (the univeral composition theorem [Can20, Theorem 22]). Under technical
assumptions, if 𝜌 is a subroutine of 𝜋 and 𝜙 UC-emulates 𝜌 , then 𝜋𝜌→𝜙 UC-emulates 𝜋 . In
particular, if F and G are ideal functionalities such that 𝜋 UC-realizes G and 𝜙 UC-realizes
F , then 𝜋F→𝜙 UC-realizes G.

All this is just a sketch; there are of course many technical details to work out. For

instance, UC comes with its own entire low-level model of distributed computation. The

underlyingmachinemodel is a specific kind of interactive Turingmachine, which has seven
different tapes with differing semantics and read/write permissions, and the network is

mediated by a control function, which can modify or block messages between machines

involved in a computation. There is no formal notion of a “secure channel” in UC, nor of

other basic cryptographic resources; instead every resource is meant to be represented as

an auxiliary machine which implements some ideal functionality.

To summarize and begin to evaluate the framework, we now return to the questions

from Section 1.3.1.

In Question 1, we asked what kinds of protocols are being composed. Protocols in UC

are sets of interactive Turing machines behaving according a highly specific execution

model. On one hand, Turing machines are a standard and well-understood model of clas-

sical computation, and the flexibility of the notion of environment allows for encoding

24 Chapter 1. Cryptography

a wide variety of security properties. On the other hand, the technical specificity of the

interaction model makes it difficult to formally apply the model; in practice papers tend

not to work with the precise model, and it is not clear to the author that the model is

sufficiently well-understood to justify the common level of hand-waving. Furthermore,

this machine model makes it difficult to apply UC to other models of computation. For

instance, to deal with quantum cryptography, we need to use a mathematically separate

framework based on quantum which redoes much of the work of the UC paper—in fact,

there are at least three competing frameworks for doing so [Unr04; BM04; Unr10], each

with their own ad-hoc notion of “quantum machine.”

In Questions 2 and 3, we asked about the definition and scope of composition. The sub-

routine substitution operation from UC is extremely general. Canetti argues, and the last

twenty years have demonstrated, that together with control functions which model ad-

versarial network conditions, UC composition can handle sequential, parallel, concurrent,

and asynchronous composition; that it can handle compositions with variable numbers of

rounds and subroutine calls; with coordinated or uncoordinated timings; with adaptively

chosen inputs and adversaries; composition with shared and independent state; and more.

One good source of examples of these claims is [Can06].

In Question 4, we asked how the system derives security definitions for composite

protocols. UC works similarly to the oracle model: there is one “outermost” protocol, and

we substitute real protocols for idealized subroutines within the protocol. The key point is

that the definition of UC-emulation is strong enough to allow a protocol to be substituted

for an ideal functionality virtually anywhere and any time. However, this imposes a high

proof burden which makes many UC proofs intractable, as even aside from the low-level

details of the machine model, constructing a simulator that is in constant conversation

with the environment is quite burdensome. The high proof burden also leads to impos-

sibility results that can require somewhat ad-hoc setup assumptions to overcome [CF01;

Bar+04; KL07; JM20].

In Question 5, we asked which kinds of adversaries the system accommodates. UC

is again quite flexible in this regard. Adversarial behavior is built into the protocol via

backdoor tapes and corruption messages, and then a separate party called the adversary

activates (potentially in a controlled, stateful way, so that they cannot for instance just

corrupt all the parties) corruption messages during the protocol. In this way, UC conve-

niently avoids dealing in the formalism with different models of adversaries, since they

may be specified on a protocol-by-protocol basis. For instance, a protocol meant to be

secure against semi-honest adversaries may just allow backdoor messages which ask the

corrupted party to forward its state to the environment, while a protocol meant to be se-

cure against malicious adversaries may allow a party to be completely piloted over via

instructions sent to its backdoor tape. In [Can00, Section 7.1.1], Canetti gives examples of

a wide variety of adversarial models which can be incorporated in this way. Furthermore,

this approach allows UC proofs to compose protocols which are secure against different

forms of adversary.

In Question 6, we asked what protocols we can securely compose secure protocols

with. UC does not require that the protocols we compose with are secure; in fact there

are essentially no requirements on the “outer” protocol into which the substitution will

occur. We also saw previously that any framework for composition needs some way to

1.3. Composition 25

assert that the protocols being composed are “independent enough” that one does not give

away the secret key of the other; UC does this with the notion of “subroutine respecting”

protocols, which are one of the only technical limits on composition.

In Question 7, we asked how many times we can compose protocols. We have not

discussed nested UC-composition, but the universal composition theorem holds up to

polynomially many nested substitutions of subroutines, which as discussed earlier is a

tight bound.

Finally, we give two pieces of evidence of the naturality of UC. Technically, [Lin03]

proved that, if a protocol for multi-party function computation is secure under paral-

lel composition with even a constant number of (not-necessarily-secure) other protocols,

then it is UC-secure. Socially, a precise connection has recently been established between

UC and the independently-formulated robust compilation (RC) framework from program-

ming language security [PKW22]; while RC is a comparatively new tool, this connection

suggests a cross-field applicability of even the technical details of UC.

That said, while UC has clear merits, especially in terms of its incredible flexibility,

there are serious disadvantages to carrying around that degree of complexity. In particu-

lar, UC cannot handle other models of computation, its proofs are often messy and hard

to verify, and it carries several impossibility results that seem somewhat artificial. We will

conclude the chapter by surveying some alternatives.

1.3.5 Alternative Approaches
Several authors attempt to simplify UC by reducing the intended scope. This approach is

most notably taken by the “simple UC” approach of [CCL15] in the special case of standard

multiparty computation, as well by “simplified UC”
10
[Wik16], which fixes the number of

parties and does not handle adaptive adversaries. The approach of [CCL15] has been quite

successful; simple UC has been widely used for composable proofs of secure multiparty

computation in the literature [MR19; HSS20; Lin22; SKM23].

Another approach in the direction of UC is to use proof automation technologies from

programming language theory to give constructive UC proofs which can be checked and

even implemented by machine. For instance, IPDL [Mor+21], a logic for reasoning about

secure probabilistic message-passing computations, has a weak equational theory gener-

ated by a UC-inspired observational equivalence relation, while symbolic UC [BU13] and

the interactive lambda calculus [LHM19] build programming calculi for UC variants over

the 𝜋-calculus. There has even been early progress, in the form of EasyUC [CSV19], in

implementing domain-specific languages for frameworks of this sort in proof assistants.

While these approaches generally trade complex machine models for complex typing dis-

ciplines without reducing the complexity off the core framework, the hope is that these

typing disciplines will facilitate easier proof automation, removing a lot of the complexity

from human view.

Slightly further from UC, several authors give UC-like frameworks with different low-

10
Confusingly, not only are simple UC and simplified UC unrelated, the abstract of [CCL15] actually

refers to their framework as simplified UC, whereas in the paper and the rest of the literature it is called

simple UC. The simple UC model of [CCL15] is a better-known framework and references to this term in

the literature generally refer to this model.

26 Chapter 1. Cryptography

level machine models. This approach is taken, for instance, by IITM-based UC [Cam+19],

which uses “interactive inexhaustible Turing machines”, and GNUC [HS11], which uses

statically-linked composition rather than the dynamic linking of UC. None of these al-

ternative models have caught on to any significant degree; they generally seem to suffer

either from expressiveness issues or from the same overcomplexity as UC.

A more radical approach is to ignore the low-level details entirely, and instead give

an algebraic axiomatization of the properties which a machine model ought to satisfy.

This approach is taken by both constructive cryptography [Mau12] and abstract cryptog-

raphy [MR11]. In these closely-related models, there is an abstract notion of a “resource

system,” which is a partially ordered set of resources and set of reductions between them

satisfying some axioms. These algebraic theories can then be instantiated explicitly with

resources and reductions obtained from some specific class of cryptographic systems.

As this brief survey demonstrates, the problem of cryptographic composability is an

active and important area of research with many different ongoing approaches. An excel-

lent high-level summary of the state of the field (as of 2019) is the report from the Dagstuhl

seminar on the subject [Cam+19].

Chapter 2

Category Theory

The notion of a category, originally developed as an abstraction for certain ideas in pure

mathematics, turns out to be the natural algebraic axiomatization of a collection of strongly

typed, composable processes, such as functions in a strongly typed programming lan-

guage. More philosophically, we can think of a category as an algebra of composition, and
category theory as the mathematical study of composition. In this chapter, we will de-

velop the basic theory of categories, prioritizing examples from computer science where

possible.

Basic texts on category theory include [Mac71] and [Rie17], while the connection to

computer science is explored in [Pie91] and [BW90]. A more advanced treatment of the

connection, especially applications to programming language theory, is [Jac99].

2.1 Basic Notions

2.1.1 Categories
Definition 2.1 (category). A category C consists of the following data:

• a collection
1
of objects, overloadingly also called C;

• for each pair of objects 𝑥,𝑦 ∈ C, a collection of morphisms C(𝑥,𝑦);
• for each object 𝑥 ∈ C, a designated identity morphism 𝑥

1𝑥−→ 𝑥 ;

• for each pair of morphisms 𝑥
𝑓
−→ 𝑦

𝑔
−→ 𝑧, a designated composite morphism 𝑥

𝑔𝑓
−−→ 𝑧.

This data must satisfy the following axioms:

• unitality: for any 𝑥
𝑓
−→ 𝑦, 1𝑦 𝑓 = 𝑓 = 𝑓 1𝑥 ;

• associativity: for any 𝑥
𝑓
−→ 𝑦

𝑔
−→ 𝑧

ℎ−→ 𝑤 , (ℎ𝑔) 𝑓 = ℎ(𝑔𝑓).
Notation. In addition to those used above, many syntaxes are common in the literature

for basic categorical notions. For convenience, we survey some here, though we will try

to be consistent in our notation.

1
We use the word collection for foundational reasons: in many important examples, the objects and mor-

phisms do not form sets. We ignore such foundational issues here; they are discussed in [Mac71, subsection

1.6].

28 Chapter 2. Category Theory

• A morphism 𝑓 ∈ C(𝑥,𝑦) is often written 𝑓 : 𝑥 → 𝑦 or 𝑥
𝑓
−→ 𝑦; 𝑥 is called its domain

or source and 𝑦 is called it codomain or target.
• Morphismsmay be calledmaps, arrows, or homomorphisms; the class ofmorphisms

C(𝑥,𝑦)may also be written HomC (𝑥,𝑦) or just Hom(𝑥,𝑦), and is often called a hom-
set.

• Composition is written 𝑔𝑓 or 𝑔 ◦ 𝑓 ; in the literature it is sometimes written in the

left-to-right order 𝑓 𝑔; we will never do this.

• Identities are written 1𝑥 , id𝑥 , or just 𝑥 where the context is clear; we will never do

the latter.

Example 2.2 (functional programming languages). Consider some strongly-typed func-

tional programming language 𝐿, whose functions are never side-effecting. Then under

very modest assumptions about 𝐿, we can make a category L, as follows:

• the objects of L are the types of 𝐿;

• the morphisms L(𝐴, 𝐵) are the functions of type 𝐴→ 𝐵;

• the identities 1𝐴 are the identity functions 𝐴→ 𝐴;

• composition of morphisms are the usual function composition.

If 𝐿 is truly non-side-effecting, then it’s straightforward to check that this construction

does indeed satisfy the axioms of a category; see for instance [BW90, subsection 2.2] to

see the necessary assumptions spelled out rigorously.

Categories are also widespread in mathematics, as the following examples show.

Example 2.3 (concrete categories). The following are all categories:

• Set is the category of sets and functions.

• Grp is the category of groups and group homomorphisms.

• Ring is the category of rings and ring homomorphisms.

• Top is the category of topological spaces and homeomorphisms.

• For any field k, Vectk is the category of vector spaces over k and linear transfor-

mations.

We call such categories, whose objects are structured sets and whose morphisms are

structure-preserving set-functions, concrete. On the other hand, many categories look

quite different.

Example 2.4. The following are also categories:

• The empty category has no objects and no morphisms.

• The trivial category has a single object and its identity morphism.

• Any group (or, more generally, monoid) can be thought of as a category with a

single object, a morphism for every element, and composition given by the monoid

multiplication.

• Any poset (or, more generally, preorder) (𝑃, ≤) can be thought of as a category

whose objects are the elements of 𝑃 , with a unique morphism 𝑥 → 𝑦 if and only if

𝑥 ≤ 𝑦. In this sense, composition is a “higher-dimensional” transitivity, and identi-

ties are higher-dimensional reflexivity.

2.1. Basic Notions 29

• Associated to any directed graph is the free category on the graph, whose objects

are nodes and whose morphisms are paths. In particular, the identities are just the

empty paths, while composition concatenates two paths.

• Let 𝑀 = (𝑄, 𝛿) be an automaton over an alphabet Σ, so that 𝛿 : 𝑄 × Σ → 𝑄 is a

transition function (one may replace 𝑄 with P(𝑄) in the codomain to represent a

nondeterministic automaton). There is an associated categoryM whose objects are

exactly the states and whose morphismsM(𝑞1, 𝑞2) are the words𝑤 ∈ Σ∗ such that,

if 𝑀 is in the state 𝑞1 and receives 𝑤 as input, it ends in the state 𝑞2. The identity

morphism 1𝑞 is the empty word, and composition is concatenation of words
2
.

• There is a category whose objects are (roughly) multisets of molecules and whose

morphisms are chemical reactions. See [BP17] for a formalization of this notion.

The following construction is very important.

Definition 2.5. Given two categories C and D, the product category C × D has:

• as objects, pairs (𝑋,𝑌) of objects in C and D;

• as morphisms (𝑋,𝑌) → (𝑋 ′, 𝑌 ′), pairs (𝑓 , 𝑔) of morphisms so that 𝑓 : 𝑋 → 𝑋 ′ and
𝑔 : 𝑌 → 𝑌 ′;

• composition and identities defined componentwise.

When C and D are categories of computations, we think of C × D as a category of

non-interfering parallel computations: a computation in C×D is a computation in C and

a computation in D, but they cannot interact.

When working with categories, we often want to show that two complex composites

of morphisms equate. In this case, we prefer graphical notation to the more traditional

symbolic equalities of Definition 2.1. A diagram in a category C looks something like so
3
:

𝑤 𝑥

𝑦 𝑧.

𝑓

ℎ 𝑔

𝑘

This diagram identifies four objects 𝑤, 𝑥,𝑦, 𝑧 ∈ C, and four morphisms 𝑓 ∈ C(𝑤, 𝑥),
𝑔 ∈ C(𝑥, 𝑧), ℎ ∈ C(𝑤,𝑦), and 𝑘 ∈ C(𝑦, 𝑧).

We say that a diagram commutes if, for any pair of paths through the diagramwith the

same start and end, the composite morphisms are equal. In this language, the previous

diagram commutes if and only if 𝑔𝑓 = 𝑘ℎ.

Example 2.6. The axioms of Definition 2.1 are expressed by commutativity of the fol-

lowing three diagrams:

𝑥 𝑦 𝑧 𝑤
𝑓

𝑔𝑓

𝑔

ℎ𝑔

ℎ

𝑥 𝑥

𝑦

1𝑥

𝑓
𝑓

𝑥 𝑦

𝑦.

𝑓

𝑓
1𝑦

2
I believe this example is due to [Gog+73, Example 2.2].

3
The notion of a diagram can be made precise fairly easily; see [Rie17, subsection 1.6].

30 Chapter 2. Category Theory

The key idea is that commutative diagrams can be “pasted”, allowing us to build up

complex equalities from simpler ones. For instance, if

𝑤 𝑥

𝑦 𝑧

𝑓

ℎ 𝑔

𝑘

and

𝑥 𝑣

𝑧

𝑙

𝑔
𝑚

both commute, then by pasting along the shared morphism 𝑔, so does

𝑤 𝑥 𝑣

𝑦 𝑧.

𝑓

ℎ

𝑙

𝑚

𝑘

Note that, in order for these diagrams to be well-defined, we need composition to be

associative: otherwise the top-right path of the previous diagram would be ambiguous.

In some sense, the algebraic axioms are chosen exactly so that the diagrammatic calculus

is coherent. This will be a repeated theme for us.

Regardless, this pasting property is essentially just a re-expression of the transitiv-

ity and substitution properties of equality, but gives an extraordinarily useful geometric

intuition to categorical arguments.

2.1.2 (Iso)morphisms
The philosophy of category theory is that

to study an object, one should study its morphisms.

Indeed, in every category, morphisms give enough information to recover the data of an

object.

Example 2.7. In the following categories, we can reconstruct an object by “probing” it

with morphisms from suitable choices of other objects.

• Let 𝑋 be a set. A function 𝑓 : {∗} → 𝑋 is exactly a choice of 𝑓 (∗) ∈ 𝑋 , so the

morphisms Set({∗}, 𝑋) identify exactly the elements of 𝑋 , i.e. the entire data of a

set.

• Let 𝑋 be a topological space. A continuous map 𝑓 : {∗} → 𝑋 picks out the points

of 𝑋 , as before. Let 𝑆 = {0, 1}, with {1} open; this is the Sierpinski space. Then a

continuous map 𝑓 : 𝑋 → 𝑆 consists of a choice of open set 𝑓 −1(1) ⊆ 𝑋 , so the

morphisms Top(𝑋, 𝑆) identify exactly the open sets of 𝑋 . Together with the points,

this is the entire data of a topological space.

• Let 𝐺 be a group. A group homomorphism 𝑓 : Z→ 𝐺 is determined by a choice of

𝑓 (1) ∈ 𝐺 , so these pick out the elements. Letting − be the group homomorphism

Z→ Z which takes 𝑧 to −𝑧, the composite 𝑓 − picks out the inverse of the element

identified by 𝑓 . To recover the multiplicative structure, we consider the free product

2.1. Basic Notions 31

group 𝐺 • 𝐻 , whose elements are words 𝑔1ℎ1𝑔2ℎ2 · · ·𝑔𝑛ℎ𝑛 modulo the relations of

𝐺 and 𝐻 , and whose multiplication is concatenation. There is a canonical map

𝜑 : Z → Z • Z given by 1 ↦→ 11
′
(we represent elements in the second copy of Z

with
′
s). Given two morphisms 𝑓 , 𝑔 : Z→ 𝐺 , we can define a map 𝑓 •𝑔 : Z •Z→ 𝐺

by 𝑧1𝑧
′
1
· · · 𝑧𝑛𝑧′𝑛 ↦→ 𝑓 (𝑧1)𝑔(𝑧′1) · · · 𝑓 (𝑧𝑛)𝑔(𝑧′𝑛). Because the map (𝑓 • 𝑔)𝜑 : Z → 𝐺

picks out exactly the element 𝑓 (1)𝑔(1), we have recovered the entire structure of𝐺
purely by studying Grp(Z,𝐺).

These examples are instances of a much more general theory, which we begin to de-

velop here. We first need to formalize what wemean by “recovering the data” of an object.

Definition 2.8 (isomorphism). A morphism 𝑓 : 𝑥 → 𝑦 in a category C is an isomorphism
if there exists an inverse morphism 𝑔 : 𝑦 → 𝑥 such that 𝑔𝑓 = 1𝑥 and 𝑓 𝑔 = 1𝑦 . Two objects

𝑥 and 𝑦 are isomorphic, written 𝑥 � 𝑦, if there exists an isomorphism between them.

Example 2.9. The general notion of isomorphism recovers the familiar notions in virtu-

ally every common setting.

• Every identity morphism is an isomorphism with itself as the inverse.

• Isomorphisms in Set are bijections; in Grp are group isomorphisms; in Vectk are

vector space isomorphisms; and in Top are homeomorphisms.

• Let 𝐺 be a group with associated category G. Then since composition is group

multiplication, every morphism in G is an isomorphism. (In fact, we can take this

as a definition: amonoid is a category with one object, while a group is a monoid in

which every morphism is an isomorphism. A groupoid is then a category in which

every morphism is an isomorphism; groupoids, which generalize groups, are a very

interesting algebraic object in their own right.)

• Let 𝑃 be a poset with associated category P. Then antisymmetry of a poset implies

that the only isomorphisms in are the identities. (A preorder is a category in which

every hom-set has at most one element; a poset is a preorder in which the only

isomorphisms are the identities.)

• Let 𝑀 = (𝑄, 𝛿) be a non-deterministic automaton over the alphabet Σ, so that 𝛿 :

𝑄 × Σ → P(𝑄) is the transition function. Recall that the identities inM are the

empty words. As such, an isomorphism between two states 𝑞1 and 𝑞2 is a word 𝑤

which takes 𝑞1 to 𝑞2, together with a word 𝑤 ′ which takes 𝑞2 to 𝑞1, such that the

concatenate𝑤𝑤 ′ is the empty string. In other words,𝑤 and𝑤 ′ are both empty—so

two states are isomorphic if and only if the machine can freely move between them

at any point.

Isomorphisms satisfy the basic properties we expect.

Proposition 2.10. Inverses are unique. Explicitly, if 𝑓 : 𝑥 → 𝑦 is an isomorphism with
inverses 𝑔, ℎ : 𝑦 → 𝑥 , then 𝑔 = ℎ.

Proof. We have

𝑔 = 1𝑥𝑔 = (ℎ𝑓)𝑔 = ℎ(𝑓 𝑔) = ℎ1𝑦 = ℎ. □

Notation. We are now justified in unambiguously writing the inverse of an isomorphism

𝑓 as 𝑓 −1.

32 Chapter 2. Category Theory

Proposition 2.11. Being isomorphic is an equivalence relation on the class of objects in a
category C.

Proof. We need to show:

• Reflexivity. The identity 1𝑥 is an isomorphism 𝑥 � 𝑥 .
• Symmetry. Given an isomorphism 𝑓 : 𝑥 → 𝑦, 𝑓 −1 is an isomorphism 𝑦 → 𝑥 with

inverse 𝑓 .

• Transitivity. Given isomorphisms 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧, 𝑔𝑓 is an isomorphism

𝑥 → 𝑧 with inverse 𝑓 −1𝑔−1. □

We now take a first step towards justifying the assertion as the beginning of the sec-

tion.

Proposition 2.12. Let 𝑥 � 𝑦 in a category C. Then:

1. for every 𝑧 ∈ C, C(𝑧, 𝑥) � C(𝑧,𝑦) ;

2. for every 𝑧 ∈ C, C(𝑥, 𝑧) � C(𝑦, 𝑧) .

Proof. Let 𝑓 : 𝑥 → 𝑦 be an isomorphism.

First, define a map 𝑓∗ : C(𝑧, 𝑥) → C(𝑧,𝑦) by post-composition, i.e. 𝑓∗(𝑔) = 𝑓 𝑔. We

claim that 𝑓 −1∗ , defined similarly, is an inverse of 𝑓∗. Letting ℎ ∈ C(𝑧, 𝑥), we have

𝑓 −1∗ (𝑓∗(ℎ)) = 𝑓 −1(𝑓 ℎ) = (𝑓 −1𝑓)ℎ = 1𝑥ℎ = ℎ,

and the same on the other side.

Similarly, define a map 𝑓 ∗ : C(𝑦, 𝑧) → C(𝑥, 𝑧) by pre-composition, i.e. 𝑓 ∗(𝑔) = 𝑔𝑓 .

Then an identical check shows that (𝑓 −1)∗, defined similarly, is an inverse of 𝑓 ∗. □

To show the other direction, we will need a little bit more machinery. Once shown,

this result will indeed imply that the entire structure of an object can be identified by

studying its morphisms. We will finally do this in the form of Theorem 2.28.

2.1.3 Functors
Enmeshed in the categorical mindset, we understand that morphisms—relationships—

between objects are of crucial importance. Since we now want to study categories, we

ask the natural question: what is the right notion of morphism between categories? The

answer is a functor, which is just a structure-preserving map between categories.

Definition 2.13 (functor). A functor 𝐹 : C → D consists of the following data:

• for each object 𝑥 ∈ C, an object 𝐹𝑥 ∈ D;

• for each morphism 𝑓 ∈ C(𝑥,𝑦), a morphism 𝐹 𝑓 ∈ D(𝐹𝑥, 𝐹𝑦).

This data must preserve the structure of the category, namely identities and composites,

meaning:

• for each object 𝑥 ∈ C, 𝐹1𝑥 = 1𝐹𝑥 ;

2.1. Basic Notions 33

• for each pair of morphisms 𝑥
𝑓
−→ 𝑦

𝑔
−→ 𝑧 in C, 𝐹 (𝑔𝑓) = (𝐹𝑔) (𝐹 𝑓).

Example 2.14. In mathematics, functors are ubiquitous as representations of procedures

for producing structures of one sort from structures of another. For instance, the following

are all functors:

• On any category C, there is an identity functor 1C : C → C which takes each object

and morphism to itself.

• There is a functor P∃ : Set → Set which takes a set 𝑋 to its powerset, and a

set-function 𝑓 : 𝑋 → 𝑌 to the direct image map given by

𝑓∃(𝐴) = {𝑦 ∈ 𝑌 : ∃𝑎 ∈ 𝐴 such that 𝑦 = 𝑓 (𝑎)}.

• There is a distinct functor P∀ : Set→ Set which takes a set 𝑋 to its powerset, and

a set-function 𝑓 : 𝑋 → 𝑌 to the map given by

𝑓∀(𝐴) = {𝑦 ∈ 𝑌 : ∀𝑥 ∈ 𝑋, 𝑓 (𝑥) = 𝑦 implies 𝑥 ∈ 𝐴}.

As these examples show, the action of a functor on morphisms is not determined

by its action on objects. (In fact, as usual in category theory, it is the action on

morphisms—in particular, on the identities—which determines the action on ob-

jects.)

• There is a functor GL𝑛 : Ring → Grp which takes a ring 𝑅 to the multiplica-

tive group GL𝑛 (𝑅) of invertible 𝑛-by-𝑛 matrices with coefficients in 𝑅, with entry-

wise action of homomorphisms. The functor GL1 has a special interpretation as the

functor which takes a ring 𝑅 to the multiplicative group of units in 𝑅. We write

(−)× : Ring→ Grp.

• There is a functor Maybe : Set→ Set which takes a set𝑋 to the set𝑋 ⊔{⊥}, where
⊥ is a new element, and a function 𝑓 to its extension by 𝑓 (⊥) = ⊥.

• Similarly, there is a functor List : Set → Set which takes a set 𝑋 to the set of all

finite lists of elements in 𝑋 , and a set-function 𝑓 to its mapping over lists, i.e.

(List𝑓) ([𝑥1, . . . , 𝑥𝑛]) = [𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)] .

In other contexts, this functor is also called the free monoid or the Kleene star.
• For any field k, there is a functor Set→ Vectk which takes a set 𝑋 to the k-span of

𝑋 , and a set-function 𝑓 to its linear extension. This is also called the free vector space.
More generally, any free construction—such as the free group, free ring, etc.—forms

a functor.

• Let C be a concrete category, such as those of Example 2.3. Then the forgetful functor
𝑈 : C → Set takes each object to its underlying set, and each morphism to its

underlying set-function, “forgetting” the additional structure.

• There is also a forgetful functor Ring → Grp which takes each ring to its under-

lying additive group, and each ring homomorphism to its underlying group homo-

morphism.

Example 2.15. As the following examples show, whenever we can think of each instance

of a certain mathematical structure as a category, functors reproduce the right notion of

structure-preserving transformation between those structures.

34 Chapter 2. Category Theory

• Let 𝑃 and 𝑄 be posets with associated categories P and Q, and let 𝐹 : P → Q be

a functor. Let 𝑝1 ≤𝑃 𝑝2, so that there is a unique morphism 𝑝1 → 𝑝2 in P. Since 𝐹
must take this morphism to a morphism 𝐹𝑝1 → 𝐹𝑝2, it must hold that 𝐹𝑝1 ≤𝑄 𝐹𝑝2.
Furthermore, this is the only requirement on functors, as the statements about iden-

tities and composites assert equalities between morphisms, but any two morphisms

with the same domain and codomain are equal in a poset. As such, functors between

posets are exactly monotone maps.

• Let 𝐺 and 𝐻 be groups with associated categories G and H . A functor 𝐹 : G →
H assigns the single object of G to the single object of H , and each morphism

in G, which is an element 𝑔 ∈ 𝐺 , to a morphism (element) 𝐹𝑔 ∈ 𝐻 . That this

preserves composites tells us that it preserves group multiplication, and hence it is

a homomorphism. The fact that 𝐹 preserves identities is extraneous, since every

group homomorphism preserves identities. As such, functors between groups are

exactly group homomorphisms.

• Let 𝐿1 and 𝐿2 be functional programming languages with associated categories L1

andL2. We think of a functor 𝐹 : L1 → L2 as an embedding—or, more technically, a

model—ofL1 inL2. Specifically, for any function inL1, 𝐹 identifies a corresponding

function in L2, and so 𝐹 allows us to think of computations in 𝐿2 as “simulating”

computations in 𝐿1.

The following class of functors are especially important.

Definition 2.16 (hom-functors). Let 𝑥 ∈ C. There is a functor

C(𝑥,−) : C → Set,

the covariant hom-functor at 𝑥 , which takes an object 𝑦 to the hom-set C(𝑥,𝑦), and a

morphism 𝑓 : 𝑦 → 𝑧 to its action by post-composition, 𝑓∗(𝑔) = 𝑓 𝑔4.

Since isomorphic objects are meant to look identical to all the machinery of category

theory, we should expect the following result.

Proposition 2.17. Let 𝐹 : C → D be a functor and let 𝑓 : 𝑥 → 𝑦 be an isomorphism in C.
Then 𝐹 𝑓 : 𝐹𝑥 → 𝐹𝑦 is an isomorphism.

Proof. We have that

𝐹 𝑓 𝐹 𝑓 −1 = 𝐹 (𝑓 𝑓 −1) = 𝐹1𝑥 = 1𝐹𝑥 ,

and the same works on the other side. □

Notice that both functorality axioms are exactly what is required to prove this result.

If functors are morphisms between categories, then we should expect that there is a

category of categories. This is indeed the case, but we first need to show that functors can

be composed.

4
The analogous functor C(−, 𝑥) requires a little bit of machinery—the notions of opposite categories and

contravariant functors—which are outside our scope. It is defined in any introductory text on category

theory.

2.1. Basic Notions 35

Proposition 2.18. Let 𝐹 : C → D and𝐺 : D → E be functors. Then there is a composite

functor 𝐺𝐹 : C → E, defined by (𝐺𝐹)𝑥 = 𝐺 (𝐹𝑥) and (𝐺𝐹) 𝑓 = 𝐺 (𝐹 𝑓). Furthermore, this
composition is associative and unital, with identities 1C .

Example 2.19. The composite of the forgetful functors Ring→ Grp and Grp→ Set is

exactly the forgetful functor Ring→ Set.

Definition 2.20. The category of categories Cat has categories as objects and functors as

morphisms.

The foundationally-inclined reader will correctly object to this definition, which im-

plies that Cat should be an object of itself, leading to issues involving Russell’s paradox.

There are several resolutions to this—for instance, letting Cat be the category of so-called

locally small categories, whose hom-sets C(𝑥,𝑦) each form sets. We ignore these issues

here.

2.1.4 Natural Transformations
The notion of a natural transformation can be somewhat mysterious, but is ultimately a

workhorse of categorical machinery. We can think of a category C geometrically as a

single point, in which case a functor 𝐹 : C → D is an oriented line—an arrow. Two

functors 𝐹,𝐺 : C → D look like

𝐶 𝐷 .

𝐹

𝐺

A natural transformation is a square—or, if you prefer, a disk—which “fills in the hole”:

𝐶 ⇓ 𝛼 𝐷 .

𝐹

𝐺

In other words, a natural transformation is a morphism between functors.

More concretely, recall that functors can be thought of as tools which, given a struc-

ture of one kind, produce one of another. In this sense, natural transformations are a

mechanism for converting between such constructions. For each object 𝑥 ∈ C, we have
two ways to construct an object of D, i.e. 𝐹𝑥 and 𝐺𝑥 . Of course, objects of D are re-

lated by morphisms, so a natural transformation 𝛼 : 𝐹 ⇒ 𝐺 should identify a morphism

𝛼𝑥 : 𝐹𝑥 → 𝐺𝑥 for each 𝑥 ∈ C.
This is not quite enough. We want to ensure that the morphisms 𝛼𝑥 are somehow

“consistent” with the morphisms of C. We formalize that intuition now.

36 Chapter 2. Category Theory

Definition 2.21 (natural transformation). Let 𝐹,𝐺 : C → D be functors. A natural
transformation 𝛼 : 𝐹 ⇒ 𝐺 consists of, for every object 𝑥 ∈ C, a component 𝛼𝑥 : 𝐹𝑥 → 𝐺𝑥

such that, for every morphism 𝑓 : 𝑥 → 𝑦 in C, the following diagram (a naturality square)
commutes:

𝐹𝑥 𝐺𝑥

𝐹𝑦 𝐺𝑦.

𝛼𝑥

𝐹 𝑓 𝐺 𝑓

𝛼𝑦

The idea is that it does not matter whether we first move from 𝑥 to𝑦 via any morphism
𝑓 , or first move from 𝐹 to𝐺 via 𝛼 ; natural transformations commute with any morphism.

This is the sense in which natural transformations are natural.

Example 2.22. There are many important examples of natural transformations.

• For any functor 𝐹 , there is an identity natural transformation 1𝐹 : 𝐹 ⇒ 𝐹 , whose

components are each the identities (1𝐹)𝑥 = 1𝐹𝑥 .

• There is a natural transformation 𝛼 : 1Set ⇒ P∃ with components 𝛼𝑋 : 𝑥 ↦→ {𝑥}.
• The dual of a vector space 𝑉 over k is the vector space of linear maps into k, i.e.
𝑉 ∗ = Vectk(𝑉 , k). There is a natural transformation 𝛼 : 1Vect ⇒ (−)∗∗ whose
components 𝛼𝑉 take any 𝑣 ∈ 𝑉 to the map ev𝑣 : V∗ → k given by 𝑇 ↦→ 𝑇𝑣 .

• There is a natural transformation det : GL𝑛 ⇒ (−)×, where 𝑅∗ is the ring of units

from Example 2.14, which takes the determinant of an invertible matrix.

• Recall from Example 2.15 that functors between posets are exactly monotone maps.

A natural transformation 𝛼 : 𝐹 ⇒ 𝐺 between two monotone maps P → Q consists

of, for each 𝑝 ∈ P, a morphism 𝐹𝑝 → 𝐺𝑝 . Since Q is a poset, there is at most one

such morphism, and it exists if and only if 𝐹𝑝 ≤ 𝐺𝑝 . As such, there can only be

one such natural transformation, and it exists if and only if 𝐹 ≤ 𝐺 in the pointwise

ordering.

• Let 𝐹,𝐺 : L1 → L2 be models of a programming language 𝐿1 in 𝐿2. A natural

transformation 𝛼 : 𝐹 ⇒ 𝐺 is a transpilation between the models: it tells us how to

convert programs written in the model 𝐹 into programs written in the model𝐺 . The

naturality squares assert exactly that this transpilation is sound, i.e. that it preserves
the meaning of programs.

Example 2.23. Here are three natural transformations common in functional program-

ming.

• Let reverse𝑋 be the function which reverses lists of elements in 𝑋 , i.e.

[𝑥1, . . . , 𝑥𝑛] ↦→ [𝑥𝑛, . . . , 𝑥1] .

Then reverse is a natural transformation List⇒ List.
• Let head𝑋 be the function which gets the first element of a list if it exists, i.e.

[𝑥1, . . . , 𝑥𝑛] ↦→ 𝑥1, [] ↦→ ⊥.

Then head is a natural transformation List⇒ Maybe.

2.1. Basic Notions 37

• Let toList𝑋 be the function Maybe𝑋 → List𝑋 given by

𝑥 ↦→ [𝑥], ⊥ ↦→ [] .

Then toList is a natural transformation Maybe⇒ List.

Each of these are special cases of the so-called Reynolds abstraction theorem from pro-

gramming language theory, which says that (parametrically) polymorphic functions are

natural [Rey83]. This theorem is explored in great detail by [Wad89].

If we think of natural transformations as morphisms between functors C → D, then

following the category-theoretic philosophy, there should be a category of functors. In-

deed, natural transformations can be composed, as follows.

Proposition 2.24. Let 𝐹,𝐺, 𝐻 : C → D be functors and let 𝛼 : 𝐹 ⇒ 𝐺 and 𝛽 : 𝐺 ⇒ 𝐻

be natural transformations. Then there is a vertical composite natural transformation 𝛽𝛼 :

𝐹 ⇒ 𝐻 , whose components are (𝛽𝛼)𝑥 = 𝛽𝑥𝛼𝑥 . Furthermore, this composition is associative
and unital, with identities 1𝐹 .

The name vertical composite comes from the following picture:

⇓ 𝛼
𝐶 𝐷 ⇝ 𝐶 ⇓ 𝛽𝛼 𝐷 .

⇓ 𝛽

𝐹

𝐺

𝐻

𝐹

𝐻

As the name implies, there is a horizontal composite, defined in e.g. [Rie17, Lemma 1.7.4].

Definition 2.25 (functor category). Let C and D be categories. The functor category
[C,D] has functors C → D as objects and natural transformations as morphisms.

Here is one example of the advantage of working with categorical structure: we al-

ready know what the notion of an isomorphism of functors has to be.

Definition 2.26 (natural isomorphism). Let 𝐹,𝐺 : C → D be functors. A natural trans-

formation 𝛼 : 𝐹 ⇒ 𝐺 is a natural isomorphism if it is an isomorphism in the category

[C,D].

Proposition 2.27. Let 𝐹,𝐺 : C → D be functors. A natural transformation 𝛼 : 𝐹 ⇒ 𝐺 is
a natural isomorphism if and only each of its components 𝛼𝑥 : 𝐹𝑥 → 𝐺𝑥 are isomorphisms
in D.

We can now state the correct form of the converse to Proposition 2.12.

Theorem 2.28. Let 𝑥 and 𝑦 be objects in a category C such that C(𝑥,−) � C(𝑦,−). Then
𝑥 � 𝑦.

38 Chapter 2. Category Theory

Proof. Let 𝜂 : C(𝑥,−) ⇒ C(𝑦,−) be a natural isomorphism. Define

𝑡 = 𝜂𝑥 (1𝑥),

which is a morphism 𝑦 → 𝑥 , and

𝑢 = 𝜂−1𝑦 (1𝑦),

which is a morphism 𝑥 → 𝑦. We claim these are inverses.

Naturality of 𝜂 applied to 𝑢 asserts that

C(𝑥, 𝑥) C(𝑦, 𝑥)

C(𝑥,𝑦) C(𝑦,𝑦)

𝜂𝑥

𝑢∗ 𝑢∗

𝜂𝑦

commutes. Following 1𝑥 around the top and right, we get

𝑢∗(𝜂𝑥 (1𝑥)) = 𝑢∗(𝑡) = 𝑢𝑡,

while on the left and bottom we get

𝜂𝑦 (𝑢∗(1𝑥)) = 𝜂𝑦 (𝑢) = 1𝑦,

so commutativity implies 𝑢𝑡 = 1𝑦 .

Similarly, naturality of 𝜂−1 applied to 𝑡 asserts that

C(𝑦,𝑦) C(𝑥,𝑦)

C(𝑦, 𝑥) C(𝑥, 𝑥)

𝜂−1𝑦

𝑡∗ 𝑡∗

𝜂−1𝑥

commutes. Following 1𝑦 around the top and right, we get

𝑡∗(𝜂−1𝑦 (1𝑦)) = 𝑡∗(𝑢) = 𝑡𝑢,

while on the left and bottom we get

𝜂−1𝑥 (𝑡∗(1𝑦)) = 𝜂−1𝑥 (𝑡) = 1𝑥 ,

so again 𝑡𝑢 = 1𝑥 . This completes the proof. □

This theorem is a special case of the Yoneda lemma, arguably the most important the-

orem in category theory. The contravariant result, with the functors C(−, 𝑥), is also true,
but outside our scope. Together, these theorems tell us that objects in a category are

indeed determined by their morphisms.

2.2. Monoidal Categories 39

2.2 Monoidal Categories
In ordinary categories, composition is sequential: if morphisms are interpreted as com-

putational processes, the composite 𝑔𝑓 means roughly “first do 𝑓 , then do 𝑔.” In many

settings, we want to consider both sequential and parallel (or concurrent) composition.

The categorical axiomatization of this idea is monoidal categories.

2.2.1 The Definition
To model parallel composition, we want a binary operation ⊗ which assigns, to each pair

of processes (morphisms) 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑤 → 𝑧, their parallel composite 𝑓 ⊗ 𝑔. If we
think of objects as types, this parallel composite can only run given inputs of both types

𝑥 and𝑤 , to feed to 𝑓 and 𝑔 respectively, and should produce two outputs of types 𝑦 and 𝑧.

To represent this notion, we also need a way to pair types (objects), which means a binary

operation also called ⊗ on objects. This dual assignment on both objects and morphisms

suggests functorality: we will ask that ⊗ is a functor C × C → C.
What axioms should this data satisfy? As in most well-behaved algebraic structures,

there should be an identity for ⊗ on objects, which we will write 𝐼 . Computationally, we

may think of 𝐼 as a “trivial resource,” which may freely be created and has no uses. This

𝐼 induces an identity, the morphism 1𝐼 , for ⊗ on morphisms, so we do not need to add

an identity on morphisms as an extra axiom. We would also like parallel composition

to associate, so that we can sensibly talk about performing 𝑛 processes in parallel. It is

therefore tempting to list the following axioms:

𝐼 ⊗ 𝑥 = 𝑥 = 𝑥 ⊗ 𝐼 ; (𝑥 ⊗ 𝑦) ⊗ 𝑧 = 𝑥 ⊗ (𝑦 ⊗ 𝑧).
While this notion, called a strict monoidal category, is useful, it is not the most natural

axiomatization. For instance, even the category Set, with the ordinary Cartesian product,

is not strictly monoidal: the identity is {∗}, but {∗} × 𝑋 is not equal to 𝑋 , instead merely

isomorphic. The point is that there is interesting structure in theway that even isomorphic

objects relate to each other; we do not want to lose it by forcing strict equality.

However, we do not want to allow the structure of these natural isomorphisms to be

too strange. For instance, one can imagine two ways to convert from 𝐼 ⊗ (𝑥 ⊗ 𝑦) to 𝑥 ⊗ 𝑦:

𝐼 ⊗ (𝑥 ⊗ 𝑦) � 𝑥 ⊗ 𝑦 and 𝐼 ⊗ (𝑥 ⊗ 𝑦) � (𝐼 ⊗ 𝑥) ⊗ 𝑦 � 𝑥 ⊗ 𝑦.

The first directly uses unitality, while the second associates and then uses unitality. A

coherence axiom asserts that choices like this do not matter: every pair of composites of

our canonical isomorphisms with the same domain and codomain should commute.

We are not quite ready; there is one remaining technical issue, though this paragraph

may be safely skipped. It may happen that two domains equate “accidentally”, so that, for

instance,

((𝑥 ⊗ 𝑦) ⊗ 𝑧) ⊗𝑤 = 𝑥 ⊗ (𝑦 ⊗ (𝑧 ⊗𝑤)) . (2.1)

In this case, the version of the coherence axiom stated above implies that the isomor-

phisms

((𝑥 ⊗ 𝑦) ⊗ 𝑧) ⊗𝑤 � (𝑥 ⊗ 𝑦) ⊗ (𝑧 ⊗𝑤) and 𝑥 ⊗ (𝑦 ⊗ (𝑧 ⊗𝑤)) � (𝑥 ⊗ 𝑦) ⊗ (𝑧 ⊗𝑤)

40 Chapter 2. Category Theory

should commute; they do, after all, have the same domain and codomain. But the first

re-associates from the left to the right, and the second re-associates from the right to the

left: these are structurally different actions, which only “look the same” because of the ac-

cident of Equation 2.1, so our theory should not require them to commute. There is a way

to formalize a correct abstract notion of coherence—see for instance [Mac71, subsection

VII.2]—but fortunately, Mac Lane’s coherence theorem enables an easier axiomatization.

We are finally now ready to state the definition of a monoidal category.

Definition 2.29 (monoidal category). A monoidal category C consists of the following

data:

• an underlying category C;
• a functor ⊗ : C × C → C, called the monoidal product;
• an object 𝐼 ∈ C, called the monoidal unit;
• a natural isomorphism 𝛼𝑥,𝑦,𝑧 : (𝑥 ⊗ 𝑦) ⊗ 𝑧 → 𝑥 ⊗ (𝑦 ⊗ 𝑧), called the associator ;
• a natural isomorphism 𝜆𝑥 : 𝐼 ⊗ 𝑥 → 𝑥 , called the left unitor5;
• a natural isomorphism 𝜌𝑥 : 𝑥 ⊗ 𝐼 → 𝑥 , called the right unitor.

This data must make the following diagrams, called the triangle and pentagon identi-

ties, commute:

(𝑥 ⊗ 𝐼) ⊗ 𝑦 𝑥 ⊗ (𝐼 ⊗ 𝑦)

𝑥 ⊗ 𝑦

𝛼𝑥,1⊗ ,𝑦

𝜌𝑥 𝜆𝑥

(𝑥 ⊗ 𝑦) ⊗ (𝑧 ⊗𝑤)

((𝑥 ⊗ 𝑦) ⊗ 𝑧) ⊗𝑤 𝑥 ⊗ (𝑦 ⊗ (𝑧 ⊗𝑤))

(𝑥 ⊗ (𝑦 ⊗ 𝑧)) ⊗𝑤 𝑥 ⊗ ((𝑦 ⊗ 𝑧) ⊗𝑤).

𝛼𝑥⊗𝑦,𝑧,𝑤 𝛼𝑥,𝑦,𝑧⊗𝑤

𝛼𝑥,𝑦,𝑧⊗1𝑤 1𝑥⊗𝛼𝑦,𝑧,𝑤

𝛼𝑥,𝑦⊗𝑧,𝑤

The above diagrams look arbitrary, but as mentioned, they are exactly what is required

for the correct notion of coherence. On first exposure to these ideas, it is safe to ignore

the exact statement of the identities and work with the intuition that any two ways of

associating or unitalizing should be the same.

In the above definition, the natural isomorphisms 𝛼, 𝜆, and 𝜌 feel in some sense more

like axioms than data. This is another key component of the category-theoretic philos-

ophy, one which should feel comfortable to computer scientists, who often assume the

existence of concrete objects which structure our models:

structure is a kind of data.

5
The letters 𝜆 and 𝜌 are chosen for their association with L and R, respectively.

2.2. Monoidal Categories 41

If we think of categories as algebras of structure, it is natural that we should think of

axiomatic structure as an algebraic object which may be manipulated
6
.

2.2.2 Examples

The notion of a monoidal category is quite general; we survey some important examples

here.

Example 2.30. Let us very explicitly construct the required data to show that Set is a

monoidal category under the Cartesian product. The monoidal unit is the singleton {∗}.
The associator is the natural isomorphism with components

𝛼𝑋,𝑌,𝑍 : (𝑋 × 𝑌) × 𝑍 → 𝑋 × (𝑌 × 𝑍)
((𝑥,𝑦), 𝑧) ↦→ (𝑥, (𝑦, 𝑧)) .

The left and right unitors are the natural isomorphism with components

𝜆𝑋 : {∗} × 𝑋 → 𝑋

(∗, 𝑥) ↦→ 𝑥,

𝜌𝑋 : 𝑋 × {∗} → 𝑋

(𝑥, ∗) ↦→ 𝑥 .

A common complaint about category theory is at play here: we now have a large

number of relationships to demonstrate, including functorality of ×, naturality of 𝛼 , 𝜆,

and 𝜌 , and the pentagon and triangle identities. The author’s opinion is that this work

will ultimately save effort, by allowing us to use a powerful abstract theory across any

structure we have shown to be monoidal, but if the reader is not convinced, one solution

is to work even more generally. For instance, by showing that the Cartesian product satis-

fies a simple property called the universal property of the product, we could automatically

conclude on the grounds of a general theorem that it is monoidal. Abstraction of this sort

ultimately saves effort, but it is not always comfortable at first. Regardless, in order to

exemplify the definition in all its detail, we continue with the explicit demonstration.

To show functorality of ×, we need to determine its action on morphisms. Letting

𝑓 : 𝑋 → 𝑌 and 𝑔 :𝑊 → 𝑍 , we define

𝑓 × 𝑔 : 𝑋 ×𝑊 → 𝑌 × 𝑍
(𝑥,𝑦) ↦→ (𝑓 (𝑥), 𝑔(𝑦)) .

This is functorial: it takes an identity 1(𝑋,𝑊) = (1𝑋 , 1𝑊) to 1𝑋×𝑊 , and the composite of

two pairs of morphisms to composite of their action on pairs.

6
Of course, Definition 2.29 still carries a traditional-looking equational theory in the form of the triangle

and pentagon identities. The key difference is that this theory is an assumption about the “two-dimensional”

structure of the natural transformations, whereas associativity and unitality are assumptions about the “one-

dimensional” structure of the functor ⊗. We could continue to generalize, instead asking that these diagrams

are themselveswitnessed by “three-dimensional” isomorphisms between the natural isomorphisms𝛼 , 𝜆, and

𝜌 . Repeating this process ad infinitum, the natural endpoint of the structure-as-data philosophy is so-called

∞-category theory.

42 Chapter 2. Category Theory

To show naturality of 𝛼 , let (𝑓 , 𝑔, ℎ) : (𝑋,𝑌, 𝑍) → (𝑋 ′, 𝑌 ′, 𝑍 ′) be a morphism in Set
3
.

We need to show that the following diagram commutes:

(𝑋 × 𝑌) × 𝑍 𝑋 × (𝑌 × 𝑍)

(𝑋 ′ × 𝑌 ′) × 𝑍 ′ 𝑋 ′ × (𝑌 ′ × 𝑍 ′).

𝛼𝑋,𝑌,𝑍

(𝑓 ×𝑔)×ℎ 𝑓 ×(𝑔×ℎ)

𝛼𝑋 ′,𝑌 ′,𝑍 ′

Tracking the action of a triple ((𝑥,𝑦), 𝑧) through both paths, we see the needed equal-

ity:

((𝑥,𝑦), 𝑧) (𝑥, (𝑦, 𝑧))

((𝑓 (𝑥), 𝑔(𝑦)), ℎ(𝑧)) (𝑓 (𝑥), (𝑔(𝑦), ℎ(𝑧))) .

𝛼𝑋,𝑌,𝑍

(𝑓 ×𝑔)×ℎ 𝑓 ×(𝑔×ℎ)

𝛼𝑋 ′,𝑌 ′,𝑍 ′

To show naturality of 𝜆, let 𝑓 : 𝑋 → 𝑌 . Since the only morphism {∗} → {∗} is 1{∗},
naturality is entailed by commutativity of the following diagram:

{∗} × 𝑋 𝑋

{∗} × 𝑌 𝑌,

𝜆𝑋

1{∗}×𝑓 𝑓

𝜆𝑌

i.e.

(∗, 𝑥) 𝑥

(∗, 𝑓 (𝑥)) 𝑓 (𝑥).

𝜆𝑋

1{∗}×𝑓 𝑓

𝜆𝑌

Naturality of 𝜌 is similar. We show the pentagon identity by its action on (((𝑥,𝑦), 𝑧),𝑤):

((𝑥,𝑦), (𝑧,𝑤))

(((𝑥,𝑦), 𝑧),𝑤) (𝑥, (𝑦, (𝑧,𝑤)))

((𝑥, (𝑦, 𝑧)),𝑤) (𝑥, ((𝑦, 𝑧),𝑤)).

𝛼𝑋×𝑌,𝑍,𝑊 𝛼𝑋,𝑌,𝑍×𝑊

𝛼𝑋,𝑌,𝑍×1𝑊 1𝑋×𝛼𝑌,𝑍,𝑊

𝛼𝑋,𝑌×𝑍,𝑊

The triangle identity is similar.

While we will never again be so explicit, we hope the previous example makes the

axioms of a monoidal category more concrete.

Example 2.31. There are many more examples of monoidal categories throughout math-

ematics.

• Vectk is monoidal with the tensor product of vector spaces.

• Cat is monoidal with the product category.

2.2. Monoidal Categories 43

• Let 𝐿 be a strongly-typed functional programming language with product types
𝐴 × 𝐵, for instance the simply-typed lambda calculus. Then the category L is

monoidal with forming product types as the monoidal product and the unit type

as the monoidal unit.

• When C andD are monoidal, C×D is monoidal with the componentwise product,

i.e. (𝑥,𝑦) ⊗ (𝑥′, 𝑦′) = (𝑥 ⊗C 𝑥′, 𝑦 ⊗D 𝑦′).

Example 2.32 (concurrent programming [MM90]). Returning to our motivation of par-

allelism, here is a very different example. Let 𝐿 be a strongly-typed functional concurrent
programming language, by which we mean that it can run computations concurrently

on different machine threads. Then again under reasonable assumptions, L is monoidal,

with concurrent branching as the monoidal product and the do-nothing program as the

monoidal unit.

2.2.3 String Diagrams
In monoidal categories, there are two “formal mechanisms” for building morphisms: se-

quential composition ◦ and parallel composition ⊗. String diagrams are a graphical cal-

culus for morphisms using these mechanisms. String diagrams and related calculi are

explored in great detail by [Sel11]; we give a basic outline here.

Consider a monoidal category C with three morphisms 𝑓 : 𝑥 → 𝑦, 𝑔 : 𝑤 → 𝑧, and

ℎ : 𝑦 ⊗ 𝑧 → 𝑢. We can can form a new morphism ℎ ◦ (𝑓 ⊗ 𝑔) : 𝑥 ⊗𝑤 → 𝑢. We encode this

new morphism in the following string diagram, written bottom-up:

𝑥 𝑤
.

𝑦 𝑧

𝑢

𝑓 𝑔

ℎ

Explicitly, the idea is as follows. A morphism is a labelled box, with “wires”
7
coming

into and out of labelled with the domain and codomain. We can hook up two wires repre-

senting the same object—this is sequential composition. We can also place boxes or wires

side-by-side—this is parallel composition. Accordingly:

𝑥

𝑧

𝑔

𝑓
=

𝑥

𝑧

𝑔 ◦ 𝑓
and

𝑥

𝑦

𝑤

𝑧

𝑓 𝑔 =

𝑥 ⊗ 𝑤

𝑦 ⊗ 𝑧

𝑓 ⊗ 𝑔 =

𝑥

𝑦

𝑤
,

𝑧

𝑓 ⊗ 𝑔

7
As theword “wire” suggests, a string diagram can be thought of as a circuit, where themorphisms/boxes

are thought of as gates. This correspondence has recently been made precise by [BS22], but the analogy is

much older, and it is a useful intuition even without any rigor. This analogy and many others are discussed

in [BS11].

44 Chapter 2. Category Theory

where in the first equality we have assumed 𝑦 = 𝑤 , so that the composition makes sense.

As the left hand side of the first equality suggests, we often suppress the label of “inter-

mediate” wires, as they are implicit from the types of the morphisms; in fact, we may even

at times suppress the labels of the input and output wires. Finally, if there is no box, then

a wire may be read as the identity for its type.

Consider the following diagram:

𝑥

𝑦

𝑤

𝑧

𝑢

𝑣

𝑓 𝑔 ℎ

Do we read this as (𝑓 ⊗ 𝑔) ⊗ ℎ or 𝑓 ⊗ (𝑔 ⊗ ℎ)? There is not an unambiguous choice,

but fortunately the coherence theorem, discussed in Section 2.2.1, means that there is a

unique natural isomorphism equating these morphisms. As such, the general rule is that

string diagrams define morphisms up to unique natural isomorphism.

Similarly, since wires of type 𝐼 can be created or destroyed at will using 𝜆 and 𝜌 , we

just do not draw such wires. A morphism with domain or codomain 𝐼 is represented with

a triangle, so that for instance if 𝑓 : 𝐼 → 𝑥 and 𝑔 : 𝑥 → 𝐼 , then

𝑔

𝑓

is the morphism 𝑔𝑓 : 𝐼 → 𝐼 .

Sometimes, wework in settingswhich have some “distinguished”morphisms, inwhich

case we will often write themmerely with dots. For instance, recall that a classical monoid
is a set𝑋 together with an associative unital binary operation. Recalling from Example 2.7

that the distinguished unit element 𝑒 ∈ 𝑋 can be associated with the unique set-function

{∗} → 𝑋 defined by ∗ ↦→ 𝑒 , we generalize the notion of a monoid as follows.

Definition 2.33 (monoid object). Let C be a monoidal category. A monoid object in C
is an object𝑚 together with distinguished morphisms 𝜇 : 𝑚 ⊗𝑚 → 𝑚 and 𝜂 : 𝐼 → 𝑚,

depicted as

𝑚 𝑚

𝑚

and ,

𝑚

called the multiplication and unit. This data must make the equalities

= (2.2)

2.2. Monoidal Categories 45

and

= = (2.3)

hold.

Let us be very explicit about what these equalities say. Equation 2.2 takes in three

wires of type𝑚. On the left, it associates them to the left, so we start with (𝑚 ⊗𝑚) ⊗𝑚.

We first multiply on the left while doing nothing on the right, and then multiply the

product with the thing on the right: this is the composite morphism

(𝑚 ⊗𝑚) ⊗𝑚 𝑚 ⊗𝑚 𝑚.

𝜇⊗1𝑚 𝜇

On the right, the𝑚s are associated to the right, so we have the composite morphism

𝑚 ⊗ (𝑚 ⊗𝑚) 𝑚 ⊗𝑚 𝑚.

1𝑚⊗𝜇 𝜇

It may be worrying that these morphisms have different domains, but as discussed, string

diagrams merely identify morphisms up to coherence isomorphism. As such, for the ax-

iom to make sense, there should be a canonical natural isomorphism making the domains

and codomains of these morphisms equate, and indeed there is: 𝛼𝑚,𝑚,𝑚 for the domains,

and just the identity for the codomains. Thus, Equation 2.2 asserts commutativity of the

diagram

(𝑚 ⊗𝑚) ⊗𝑚 𝑚 ⊗ (𝑚 ⊗𝑚)

𝑚 ⊗𝑚 𝑚 ⊗𝑚

𝑚.

𝛼𝑚,𝑚,𝑚

𝜇⊗1𝑚 1𝑚⊗𝜇

𝜇 𝜇

Meanwhile, Equation 2.3 features three morphisms. On the left, we have

𝑚 ⊗ 𝐼 𝑚 ⊗𝑚 𝑚,

1𝑚⊗𝜂 𝜇

in the middle we have the identity 1𝑚 :𝑚 →𝑚, while on the right we have

𝐼 ⊗𝑚 𝑚 ⊗𝑚 𝑚.

𝜂⊗1𝑚 𝜇

Again, the domains are related by the canonical isomorphisms 𝜆 and 𝜌 . We can write this

equality as commutativity of the diagram

𝐼 ⊗𝑚 𝑚 ⊗𝑚 𝑚 ⊗ 𝐼

𝑚,

𝜂⊗1𝑚

𝜆𝑚

𝜇

1𝑚⊗𝜂

𝜌𝑚

46 Chapter 2. Category Theory

where we suppress the identity 1𝑚 , which could appear at the bottom of the diagram.

In the following two sections, we will give several examples of definitions—in partic-

ular braided monoidal categories, symmetric monoidal categories, and monoidal functors—
whose coherence axioms are better understood diagramatically than symbolically. While

the axioms themselves are useful to understand, for our purposes it is more important to

understand the intuition of the structures in question and their relationship to the graphi-

cal calculi. If the reader understands how the diagrams relate to each other, it is generally

safe to move on even without a complete understanding of how they are translated into

symbolic equalities. The interested reader may find a symbolic statement of the coherence

laws in [Mac71, Chapter XI].

2.2.4 Symmetry
While monoidal categories are necessarily associative, nothing in the definition guaran-

tees that the monoidal product is commutative. As usual, it is too strict to ask for commu-

tativity 𝑥 ⊗ 𝑦 = 𝑦 ⊗ 𝑥 as an equational axiom. When we want commutativity, we instead

add a natural isomorphism 𝛾𝑥,𝑦 : 𝑥 ⊗𝑦 → 𝑦 ⊗ 𝑥 , called the braiding, to the data, so named

because of its string-diagrammatic representation:

𝑥

𝑥

𝑦
.

𝑦

This notation suggests a nice graphical representation of the inverse 𝛾−1𝑥,𝑦 : 𝑦 ⊗ 𝑥 →
𝑥 ⊗ 𝑦:

𝑥
.

𝑥

𝑦

𝑦

In particular, 𝛾−1𝑥,𝑦 is indeed an inverse asserts that

𝑥

𝑥

𝑦

𝑦

=
𝑥

𝑥

𝑦

𝑦

=

𝑦

,

𝑦

𝑥

𝑥

as is suggested by our geometric intuitions
8
.

Note that there are two possible braids we could draw 𝑥 ⊗ 𝑦 → 𝑦 ⊗ 𝑥 , each of which

is a priori a different morphism:

𝛾𝑥,𝑦 =
𝑥

𝑥

𝑦
,

𝑦

𝛾−1𝑦,𝑥 =
𝑦
.

𝑦

𝑥

𝑥

8
It is, in fact, possible to formalize string diagrams geometrically, using the technology of knot theory;

this is due to [JS91].

2.2. Monoidal Categories 47

What coherence axioms should this satisfy—in otherwords, whatmanipulations should

we be allowed to make to the our diagrams? It should certainly be coherent with the iden-

tity:

𝑥

𝑥

=
𝑥

𝑥

=

𝑥

.

𝑥

(2.4)

It should also not matter if we braid twice, or braid once with a product, in the sense

that:

𝑥

𝑥

𝑦

𝑦

𝑧

𝑧

=
𝑥

𝑥

𝑦 ⊗ 𝑧

𝑦 ⊗ 𝑧

and

𝑥

𝑥

𝑦

𝑦

𝑧

𝑧

=
𝑥 ⊗ 𝑦

𝑥 ⊗ 𝑦

𝑧

.

𝑧

(2.5)

The previous two axioms define a braided monoidal category.
We will care primarily about the stronger case in which

=
,

(2.6)

i.e. that 𝛾𝑥,𝑦 = 𝛾
−1
𝑦,𝑥 . We may then unambiguously write

;

we call this map the symmetry.

Definition 2.34 (symmetric monoidal category). A symmetric monoidal category is a

monoidal category C, together with a natural isomorphism 𝛾𝑥,𝑦 : 𝑥 ⊗ 𝑦 → 𝑦 ⊗ 𝑥 , called
the braiding or symmetry, satisfying the coherence laws of Equations 2.4 to 2.6.

Example 2.35. The categories Set, Vectk, and Cat, with the monoidal structure defined

in Section 2.2.2, are all symmetric monoidal.

2.2.5 Monoidal Functors

Let us work out what a “monoidal functor” between monoidal categories should be. Let

C and D be monoidal categories, and annotate their respective data with subscripts, so

that for instance ⊗C is the monoidal product of C. Let 𝐹 : C → D be a functor.

As usual, we do not want to ask that 𝐹𝑥 ⊗D 𝐹𝑦 = 𝐹 (𝑥 ⊗C 𝑦), because categorical

axioms tend only to hold up to natural transformations. A sensible choice is thus to ask

for a natural isomorphism 𝜙𝑥,𝑦 : 𝐹𝑥 ⊗D 𝐹𝑦 → 𝐹 (𝑥 ⊗C 𝑦), satisfying certain coherence

48 Chapter 2. Category Theory

identities. However, even this is often too strong. For instance, Maybe does not satisfy

this definition: while there is a map

Maybe𝑋 ⊗ Maybe𝑌 → Maybe(𝑋 ⊗ 𝑌)
(𝑥,𝑦) ↦→ (𝑥,𝑦) (𝑥,⊥) ↦→ ⊥ (⊥, 𝑦) ↦→ ⊥,

and so Maybe respects the monoidal structure in some weaker sense, this map is not an

isomorphism. Instead, we will often just ask 𝜙𝑥,𝑦 to be a morphism, which tells us how

to “convert” monoidal products in D into monoidal products in the model of D9
. We

also need 𝐹 to be compatible with the monoidal unit, for which we ask for an morphism

𝜙 : 𝐼D → 𝐹𝐼C .
There is a graphical calculus for monoidal functors due to [CS99]; we give a presenta-

tion following [Mel06]. The idea is to represent functors as colored boxes which separate

the “insideworld” of C from the “outsideworld” ofD, so that wemay depict themorphism

𝐹 𝑓 : 𝐹𝑥 → 𝐹𝑦 as

𝐹𝑥

.

𝐹𝑦

𝑓

If 𝐹 is monoidal, we write the morphism 𝜙𝑥,𝑦 as

𝐹𝑥 𝐹𝑦

,

𝐹 (𝑥 ⊗C 𝑦)

the idea being that at first the blue-shaded wires 𝑥 and 𝑦 are connected by white space

representing the product ⊗D , and then it becomes blue space representing the product ⊗C .
We often don’t write the top part of this morphism, instead doing manipulation inside C,
which happens in the blue shading. For instance, coherence with the identity states that

𝐹𝑥

𝐹𝑥

= =

𝐹𝑥

𝐹𝑥

.

(2.7)

9
A careful reader may wonder why the morphism goes from ⊗D to ⊗C , rather than the other way. We

do sometimes study the latter under the name colax monoidal functors, but the former is far more common.

One way to understand this is that the former direction says that product in D is in some sense “more

precise” than product in C, which tends to be why the functor is interesting in the first place.

2.2. Monoidal Categories 49

Similarly, compatibility with the associator asserts that

𝐹𝑥 𝐹𝑦 𝐹𝑧

𝐹 ((𝑥 ⊗C 𝑦) ⊗C 𝑧)

=

𝐹𝑧

,

𝐹𝑦𝐹𝑥

𝐹 (𝑥 ⊗C (𝑦 ⊗C 𝑧))

(2.8)

while when C andD are symmetric monoidal, we might also want compatibility with the

symmetry:

𝐹𝑦𝐹𝑥

𝐹 (𝑦 ⊗C 𝑥)

=

𝐹𝑦

.

𝐹𝑥

𝐹 (𝑦 ⊗C 𝑥)

(2.9)

Definition 2.36 (monoidal functor). A functor 𝐹 : C → D between monoidal categories

is lax monoidal, or just monoidal, if there is a natural transformation 𝜙𝑥,𝑦 : 𝐹𝑥 ⊗D 𝐹𝑦 →
𝐹 (𝑥⊗C𝑦) and a morphism𝜙 : 𝐼D → 𝐹𝐼C satisfying Equations 2.7 and 2.8. It is further sym-
metric if C and D are symmetric monoidal categories and the data satisfies Equation 2.9.

Finally, it is strong monoidal if 𝜙𝑥,𝑦 and 𝜙 are isomorphisms and strict monoidal if they are
identities.

Example 2.37. Again, there are many familiar monoidal functors.

• Maybe is (lax) symmetric monoidal, but not strong monoidal.

• For any monoidal category C, C(𝐼 ,−) is monoidal, with the coherence

𝜙𝑥,𝑦 : C(𝐼 , 𝑥) × C(𝐼 , 𝑦) → C(𝐼 , 𝑥 ⊗ 𝑦)

(𝑓 , 𝑔) ↦→
𝑓

𝑥

𝑔

𝑦

.

If C is symmetric, then so too is C(𝐼 ,−).
• The k-span functor is strong symmetric monoidal. In fact, this is one definition of

the tensor of vector spaces:

spank𝑋 ⊗ spank𝑌 = spank(𝑋 × 𝑌) .

• The forgetful functor 𝑈 : Vectk → Set is monoidal, with 𝜙𝑋,𝑌 : 𝑈 (𝑋) ×𝑈 (𝑌) →
𝑈 (𝑋 ⊗𝑌) given by the universal property of the tensor product of vector spaces, or

explicitly by the map (𝑣,𝑤) ↦→ 𝑣 ⊗𝑤 .

50 Chapter 2. Category Theory

2.2.6 Multicategories
While monoidal categories are extremely elegant structures, as seen in Example 2.30 it

can be tedious to construct all the required data. In this section, we give a useful tool for

constructing monoidal categories via a related structure called a multicategory, which is

just a category whose morphisms may take multiple inputs.

As usual, it is often easier to understand the algebraic structure diagramatically than

symbolically. A morphism in a multicategory looks like

𝑓

𝑥1

𝑥𝑛

𝑦.
.
.
.

Such morphisms can be composed when the domains and codomains line up, as in

𝑓1
.
.
.

𝑔 .
.
.
.

𝑓𝑛
.
.
.

.

.

.

This composition is (strictly) associative, which just means that the composite

𝑓 1
1

.

.

.

𝑔1
.
.
.

𝑓 1𝑚
1

.

.

.

𝑓 𝑛
1

.

.

.

𝑔𝑛
.
.
.

𝑓 𝑛𝑚𝑛

.

.

.

ℎ
.
.
.

is well-defined.

We now state the explicit definition.

Definition 2.38 (multicategory). A multicategory consists of the following data:

2.2. Monoidal Categories 51

• a collection of objects C;
• for any (possibly empty) finite list of objects 𝑥1, . . . , 𝑥𝑛 ∈ C and any object 𝑦 ∈ C, a
collection of morphisms C(𝑥1, . . . , 𝑥𝑛;𝑦);

• for any finite list of morphisms 𝑓1, . . . , 𝑓𝑛 , and any morphism 𝑔 such that the domain

of 𝑔 has length 𝑛 and the 𝑖th object in its domain is the codomain of 𝑓𝑖 , a composite

morphism 𝑔 ◦ (𝑓1, . . . , 𝑓𝑛) whose domain is the concatenation of the domains of the

𝑓𝑖s and whose codomain is the codomain of 𝑔;

• for any object 𝑥 ∈ C, a morphism 1𝑥 ∈ C(𝑥 ;𝑥).

This data must satisfy the following associativity and unitality axioms:

• for any morphism (𝑥1, . . . , 𝑥𝑛)
𝑓
−→ 𝑦,

1𝑦 ◦ 𝑓 = 𝑓 = 𝑓 ◦ (1𝑥1, . . . , 1𝑥𝑛);

• for any morphisms ℎ,𝑔1, . . . , 𝑔𝑛, 𝑓
1

1
, . . . , 𝑓

𝑚1

1
, . . . , 𝑓 1𝑛 , . . . , 𝑓

𝑚𝑛
𝑛 where the composites

are defined,

ℎ ◦ (𝑔1 ◦ (𝑓 11 , . . . , 𝑓
𝑚1

1
), . . . , 𝑔𝑛 ◦ (𝑓 1𝑛 , . . . , 𝑓𝑚𝑛

𝑛))
= (ℎ ◦ (𝑔1, . . . , 𝑔𝑛)) ◦ (𝑓 11 , . . . , 𝑓

𝑚1

1
, . . . , 𝑓 1𝑛 , . . . , 𝑓

𝑚𝑛
𝑛).

Notation. The arity of a morphism in a multicategory is the length of its domain list.

Example 2.39. Any category is a multicategory, with no morphisms of arity other than

one. Such multicategories are called unary.

Example 2.40. Any strict monoidal category has an underlying multicategory, where the
maps 𝑥1, . . . , 𝑥𝑛 → 𝑦 are exactly the maps 𝑥1 ⊗ · · · ⊗ 𝑥𝑛 → 𝑦.

We also want to consider a kind of commutativity of domain-forming in multicate-

gories. The basic idea is that we should be able to permute the domain of a hom-set and

receive a canonically isomorphic hom-set.

Definition 2.41. A symmetric multicategory is a multicategory equipped with, for each

𝑛, a right-action of the symmetric group 𝑆𝑛 on hom-sets of arity 𝑛, i.e. for 𝜎 ∈ 𝑆𝑛 , a map

(− · 𝜎) : C(𝑥1, . . . , 𝑥𝑛;𝑦) → C(𝑥𝜎 (1), . . . , 𝑥𝜎 (𝑛) ;𝑦)

which commutes with the group structure of 𝑆𝑛 , in that

(𝑓 · 𝜎) · 𝜏 = 𝑓 · (𝜎𝜏), 𝑓 = 𝑓 · 1.

This action must respect composition, in that, whenever the types line up,

(𝑔 · 𝜎) ◦ (𝑓𝜎 (1) · 𝜏𝜎 (1), . . . , 𝑓𝜎 (𝑛) · 𝜏𝜎 (𝑛)) = (𝑔 ◦ (𝑓1, . . . , 𝑓𝑛)) · (𝜎 ◦ (𝜏𝜎 (1), . . . , 𝜏𝜎 (𝑛)).

52 Chapter 2. Category Theory

This last equality requires some explanation. We have a map 𝑔 and a composition-

compatible list of maps 𝑓1, . . . , 𝑓𝑛 . If we permute the inputs to 𝑔 by 𝜎 , then we need to

permute the 𝑓𝑖s in the same way. In the most general case, we could also have further

permutations 𝜏𝑖 to the inputs of each of the 𝑓𝑖s; we need to permute those by 𝜎 as well.

This gives us the left hand side.

Of the right hand side, we first take the composite of 𝑔 and the 𝑓 s, and then want to

use the data of 𝜎 and the 𝜏𝑖s to permute the inputs to this composite morphisms. The

point is that it’s sufficient to first permute each bundle of inputs by 𝜎 , and then permute

each input to each bundle by the appropriate 𝜏 . In the case where all the maps have arity

2 and all the permutations are the transposition (12), this equality is as follows:

𝑓2

𝑔

𝑓1

=

𝑓1

𝑔 .

𝑓2

Chapter 3

Categorical Cryptography

i theory of cryptography should define at least four objects: computation, protocols, ad-

versarial behavior, and security. Amajor advantage of categorical models of cryptography

is that they conveniently separate these issues. In particular, we have some underlying

category of computations, while we represent categories of protocols with certain con-

structions on categories; as such, our notions of interaction and security are completely

independent of the underlying model of computation.

There have been several attempts to use category theory for cryptography [Hin20;

Pav12; Pav14; SV13; BKM19; BMR19], but all on the level of individual protocols; except

for [BK22], none of them handle composition. The area of categorical quantum mechan-

ics is especially active [AC04; CP12; HV19; CK17; CG19], in which categorical structures

are used to give semantics about quantum protocols; most of the tools we develop in Sec-

tion 3.2 originated in this line of work.

This chapter is primarily an exposition of the model of categorical cryptography due

to Broadbent and Karvonen [BK22]. We will be clear where we believe our contributions

to be original, but even there are hugely indebted to their work. As usual, any mistakes

are our own.

3.1 Computation

The categorical theory of computation is well-developed, going back at least to the work

of Jim Lambek and several contemporaries around the 1970s [Lam74; Lam80; Law69;

See84]. The essential idea generalizes Example 2.2: objects are types and morphisms

are typed computations. The most disciplined approach is to consider the categorical

structure needed to model certain forms of computation, so that for instance models of

simply typed computation are bicartesian closed categories [Lam74], of linear computation

are star-autonomous categories [See89], of quantum computation are compact-closed cate-
gories [AC04], and of probabilistic computation areMarkov categories [Fri20]. We will not

review this approach here. Instead, our focus will be on constructing specific categorical

models of forms of computations of interest to cryptographers.

54 Chapter 3. Categorical Cryptography

3.1.1 Deterministic Computation
We would like a category of deterministic computations to have computable functions

as morphisms. However, the natural choice, taking sets as objects and computable func-

tions as morphisms, is actually not yet precise. The first issue is that there are several

distinct notions of computability on uncountable sets. Each such notion forms a category,

but formal definitions are outside our scope, as cryptographers tend not to care about

uncountable sets anyway
1
.

We can resolve this issue simply, by limiting ourselves to finite sets, in which case

every function is computable (simply by a lookup table):

Definition 3.1 (category of finite sets). The category of finite sets, FinSet, has finite sets
as objects and functions as morphisms.

However, we often want to work with larger input spaces. The natural guess is to

take countable sets and computable functions. The issue here is one of encoding: there

is a canonical notion of computability on the set of finite binary strings, but elements of

arbitrary sets do not generally have canonical encodings as binary strings. We could solve

this issue by limiting ourselves to working only with binary strings:

Definition 3.2 (category of computable binary functions). The category of computable
binary functions BinComp has sets of binary strings𝐴 ⊆ {0, 1}∗ as objects and computable

functions as morphisms.

In practice, however, we like to think of computations as working over arbitrary sets,

which in particular may have more algebraic structure than sets of binary strings. Our

strategy, which essentially expands on that of [Pav14], will be to work over sets with fixed

binary encodings.

Definition 3.3 (binary-encoded set). A binary-encoded set is a set 𝑋 together with an

injection ⟦−⟧𝑋 : 𝑋 → {0, 1}∗, called the encoding.

Note that every binary-encoded set is finite or countable; as such, we avoid the issues

with uncountable sets mentioned above.

Notation. When the context is clear, we will generally drop the subscript of ⟦−⟧. We write

⟦𝑋⟧ for the image of ⟦−⟧𝑋 , i.e. ⟦𝑋⟧ = {𝑠 ∈ {0, 1}∗ : 𝑠 = ⟦𝑥⟧ for some 𝑥 ∈ 𝑋 }.
Given a function 𝑓 : 𝑋 → 𝑌 of binary-encoded sets, we can define a function

⟦𝑓 ⟧ : ⟦𝑋⟧ → ⟦𝑌⟧
⟦𝑥⟧ ↦→ ⟦𝑓 (𝑥)⟧.

This is well-defined exactly because ⟦−⟧𝑋 is injective.

Definition 3.4 (category of computable functions). A function 𝑓 : 𝑋 → 𝑌 of binary-

encoded sets is computable if ⟦𝑓 ⟧ is computable. The category of computable functions,
Comp, has binary-encoded sets as objects and computable functions as morphisms.

1
These issues are studied in the field of computable analysis; see for instance the PhD thesis of Andre

Bauer [Bau00].

3.1. Computation 55

It needs to be shown that this is a category. First, the identities 1𝑋 are computable, as

⟦1𝑋⟧ = 1⟦𝑋⟧ is computable. Second, the composite of computable functions is computable,

as the composition of computable binary functions is computable, and composition is

preserved by ⟦−⟧. As this argument indicates, there is a functor ⟦−⟧ : Comp→ BinComp;

in fact this functor is an equivalence of categories. Nevertheless, the expanded perspective
provided by Comp will be convenient.

Finally, we now define a symmetric monoidal structure on Comp. In particular, for

two binary-encoded sets 𝑋 and 𝑌 , we would like to define the product 𝑋 ⊗ 𝑌 as the

set 𝑋 × 𝑌 , but it is unclear what ⟦−⟧𝑋×𝑌 should be. We first fix an injective pairing

map ⟨−,−⟩ : {0, 1}∗ × {0, 1}∗ → {0, 1} which is efficiently computable
2
. We can then

define ⟦(𝑥,𝑦)⟧ = ⟨⟦𝑥⟧, ⟦𝑦⟧⟩; it is a standard check that this defines a symmetric monoidal

structure inherited from Set
3
.

3.1.2 Probabilistic Computation
Again, there is some subtlety with probabilistic computation. Even in the case of finite

sets, not every stochastic function is computable by algorithms with access to fair coin

flips
4
. However, there is again a standard notion of computable stochastic function of

binary strings, so we can proceed much as before, defining:

Definition 3.5 (category of computable stochastic functions). The category of computable
stochastic functions, BinCompStoch, has sets of binary strings as objects and computable

stochastic functions as morphisms.

A stochastic function 𝑓 : 𝑋 → 𝑌 between binary-encoded sets is computable if ⟦𝑓 ⟧
is computable. The category of computable stochastic functions CompStoch has binary-

encoded sets as objects and computable stochastic functions as morphisms.

Again, it needs to be shown that this is a category. The identities are computable (and

stochastic, since every deterministic function is stochastic), and composition commutes

with ⟦−⟧, so the composite of computable functions is computable. Furthermore, this

category is symmetric monoidal, with pairing of encodings as in Comp.

We give a more abstract characterization of this category, which to our knowledge

is original to us, though it is an easy extension of standard ideas. This idea uses some

machinery—monads and their Kleisi categories—we have not introduced, but it may be

safely skipped.

2
One such map is computed as follows: given inputs (𝑚,𝑛), start by encoding the length of 𝑚 in

2 log log𝑚 bits: first write a bit of the length, then write a 1 if the length continues and a 0 if it doesn’t.

Now knowing the length of 𝑚, we can append the binary representation of 𝑚 and then 𝑛, which takes

𝑂 (log𝑚 + log𝑛) = 𝑂 (log(𝑚𝑛)) bits. Since log log𝑚 = 𝑂 (log𝑚), in total this algorithm takes 𝑂 (log(𝑚𝑛))
bits, and just writes across the tape, hence is computable in linear time.

3
Here is a more abstract way to see this. A suitable pairing function ⟨−,−⟩ turns {0, 1} into an internal

commutative monoid in Set. In other work, we show that the category of subobjects of any internal monoid

is a monoidal category [SZ24]. The construction here is approximately an application of that general theo-

rem.

4
We believe this is a slight conceptual problem with the strategy of [BK22, Section 6], which models

unbounded probabilistic computation in the category of finite sets and stochastic functions: this category

is too powerful to reasonably model computation. This does not pose a technical issue in their specific

example.

56 Chapter 3. Categorical Cryptography

There are only countably many computable probability distributions on {0, 1}∗, since
there are only countably many Turing machines. Fix a choice 𝜑 of bijection from prob-

ability distributions on {0, 1}∗ to {0, 1}∗. Note further that any probability distribution 𝑃

on a binary-encoded set 𝑋 induces a probability distribution ⟦𝑃⟧ on {0, 1}∗ by

Pr

𝑠←⟦𝑃⟧
[𝑠 = 𝑠0] = Pr

𝑥←𝑃
[⟦𝑥⟧ = 𝑠0] .

There is now a monad 𝐺𝑐 : Comp → Comp, which we call the computable Giry monad,
which takes any binary-encoded set 𝑋 to the set of computable probability distributions

on 𝑋 , i.e. those such that ⟦𝑃⟧ is a computable probability distribution on {0, 1}∗, with
encoding given by ⟦𝑃⟧𝐺𝑐𝑋 = 𝜑 (⟦𝑃⟧𝑋). Given 𝑓 : 𝑋 → 𝑌 and 𝑃 ∈ 𝐺𝑐𝑋 , we define the

probability distribution 𝐺𝑐 𝑓 (𝑃) on 𝑌 by

Pr

𝑦←𝐺𝑐 𝑓 (𝑃)
[𝑦 = 𝑦0] = Pr

𝑥←𝑃
[𝑓 (𝑥) = 𝑦0] .

The unit of 𝐺𝑐 is the function 𝑋 → 𝐺𝑐𝑋 taking 𝑥 to the point distribution at x. The mul-

tiplication is the function 𝜇𝑋 : 𝐺𝑐𝐺𝑐𝑋 → 𝐺𝑐𝑋 acting by summation: given a probability

distribution 𝑄 on 𝐺𝑐𝑋 , we define a distribution 𝜇𝑋 (𝑄) on 𝑋 by

Pr

𝑥←𝜇𝑋 (𝑄)
[𝑥 = 𝑥0] =

∑︁
𝑃0∈𝐺𝑐𝑋

Pr

𝑃←𝑄
[𝑃 = 𝑃0] Pr

𝑥←𝑃
[𝑥 = 𝑥0],

which converges because 𝑄 is a probability distribution. The proofs of functorality and

the monad laws are exactly as for the ordinary Giry monad [Gir82], so we do not give

them here. Now CompStoch is in fact (isomorphic to) the Kleisi category of 𝐺𝑐 .

3.1.3 Efficient and Effectful Computation

Suppose that we are given some wide
5
subcategory EffBin of BinComp, for instance that

of poly-time computable maps. We can define the category EffComp of efficient com-

putations as the wide subcategory of Comp consisting of morphisms 𝑓 whose encodings

⟦𝑓 ⟧ are in EffBin: this is the preimage of EffBin under the functor ⟦−⟧.

Definition 3.6. The category P of poly-time computable maps is the wide subcategory

of Comp consisting of those morphisms 𝑓 such that ⟦𝑓 ⟧ is poly-time computable.

Similarly, suppose that we are give some wide subcategory of BinCompStoch, for in-

stance that of poly-time computable stochastic maps. We can similarly define the category

EffCompStoch.

Definition 3.7. The category PPT of poly-time computable stochastic maps is the wide

is the wide subcategory of CompStoch consisting of those morphisms 𝑓 such that ⟦𝑓 ⟧ is
probabilistic poly-time-computable.

5
A subcategory is wide if it contains all the objects; equivalently, if it contains all the identities.

3.1. Computation 57

In general, we can perform this construction for any complexity class𝐶 which is closed

under composition.

Even more generally, we can combine the idea of [Pav14] to use binary-encoded sets

with the standard use in programming language theory of the Kleisi category of a monad

as a model of effectful computation; to our knowledge this combination is original, but

again is a very straightforward combination of these two standard ideas. Let Bin be the

category of sets of binary strings and (maybe uncomputable) set-functions between them.

Let Enc be the category of binary-encoded sets and (maybe uncomputable) set-functions

between them. Then ⟦−⟧ is an equivalence of categories Enc ≃ Bin.

Now let EffBin be any subcategory of Bin. Then the category of efficient computations
Eff is the subcategory of Enc consisting of morphisms 𝑓 such that ⟦𝑓 ⟧ is in EffBin, i.e.

the preimage of EffBin under ⟦−⟧. Finally, let 𝑇 be any monad on Enc which restricts

to a monad on Eff. Then the category of efficient 𝑇 -computations is the Kleisi category of

the restriction of𝑇 to Eff. When𝑇 is symmetric lax monoidal, this category is symmetric

monoidal.

Example 3.8. Each example in the previous three sections is a special case of this con-

struction.

• When EffBin consists of computable functions and 𝑇 is the identity monad, we

recover Comp.

• When EffBin consists of computable functions and𝑇 is the computable Girymonad,

we recover CompStoch.

• When EffBin consists of poly-time computable functions and 𝑇 is the identity

monad, we recover P.

• When EffBin consists of poly-time computable functions and 𝑇 is the poly-time
Giry monad, which sends a set 𝑋 to the set of poly-time computable probability

distributions on 𝑋 , we recover PPT.

The point is that for any notion of efficient computation, and any notion of compu-

tational effect (since effects are generally monadic [WT03]), as long as the effect can be

efficiently represented, we can use the machinery of binary-encoded sets to define a cat-

egory of efficient computations carrying the given effect.

3.1.4 Quantum Computation

While an complete introduction to quantum computation is outside our scope, we can

sketch a categorical perspective; a standard introduction is [NC10]. The category of quan-
tum computations FinHilb is the category of finite-dimensional Hilbert spaces over C and

linear maps. Since nontrivial complex Hilbert spaces have uncountably many vectors, we

cannot directly model this category using the machinery of the previous section, as there

is no way to encode a complex Hilbert space as an object of Bin. If we had developed a

more general theory relying on a notion of computability over uncountable sets, then we

could now unify these perspectives; indeed, there have been several attempts to monad-

ically embed quantum computation into classical calculi [AG09; Abr+17]. As we have

58 Chapter 3. Categorical Cryptography

chosen not to develop such a general theory, in this section we will treat Hilbert spaces

as our primitive object.

A quantum computation is a sequence of unitary transformations and measurements.
There are several ways to provide categorical semantics to quantum measurement; we

follow [HV19].

Let 𝐼 be the one-dimensional Hilbert space. Note that the maps 𝐼 → 𝐼 correspond to

choices of scalars 𝜆 ∈ C; as such, we say that a scalar is a map 𝐼 → 𝐼 . Given a Hilbert

space 𝑉 , a state is a map 𝐼 → 𝑉 , so that a state is determined by a choice of vector in 𝑉 .

If 𝐼
𝑎−→ 𝑉 and 𝐼

𝑏−→ 𝑉 are states, then the projection of 𝑎 onto 𝑏 has amplitude

𝐼
𝑎−→ 𝑉

𝑏†−→ 𝐼 ,

where (−)† denotes the adjoint; the corresponding element of C is the inner product

⟨𝑏, 𝑎⟩. Now the Born rule of quantum mechanics asserts that the probability of measuring

the outcome 𝑏 from the state 𝑎 is |⟨𝑏, 𝑎⟩|2. Categorically, if 𝐼 𝑎,𝑏−−→ 𝑉 are states, then the

probability of measuring 𝑏 from the state 𝑎 is the scalar

𝐼
𝑎−→ 𝑉

𝑏†−→ 𝐼
𝑏−→ 𝑉

𝑎†−→ 𝐼 .

This is just a brief sketch of a very rich theory; see especially the work of Bob Coecke

such as [AC04; CP12; CK17], or the book by Heunen and Vicary [HV19]. The key point is

that any fully categorical treatment of cryptography should obtain quantum cryptography

as a special case.

3.2 Protocols
The categorical semantics of interactive computation, and in particular of protocols, orig-

inates from the study of quantum cryptography, especially of so-called resource theo-
ries [CFS16]. The idea is to start with some underlying symmetric monoidal category

C of computations—fixed throughout this section—and to construct a category of “proto-

cols built from computations in C.” Exactly which such construction we choose depends

on what we want our protocols to look like.

In all these categories, the basic idea is that we will think of objects as resources and

morphisms as protocols, which convert some resources into others. For instance, in the

category n-comb(C), morphisms will be “protocols with holes”—when instantiated with

specific implementations of the resources they are waiting for, they provide some new

resource.

3.2.1 States
In the symmetric monoidal category Set, the morphisms {∗} → 𝑋 are in natural corre-

spondence with the elements of 𝑋 , by the bijection

(∗ ↦→ 𝑥) ↦→ 𝑥 .

3.2. Protocols 59

Similarly, in the symmetric monoidal category Vectk, the morphisms k→ 𝑉 are in natu-

ral correspondence with vectors in 𝑉 , since such maps are determined by their action on

the vector 1 ∈ k. This pattern holds more generally, motivating the following definition.

Definition 3.9 (state). A state or generalized element of C is a morphism 𝐼 → 𝑋 for some

object 𝑋 .

As we know from Section 2.2.3, it is easy to recognize states string-diagramatically:

they are downward-pointing triangles.

In general, we think of hom(𝐼 ,−) as a functor identifying an “underlying set” of objects
in a monoidal category, even when the category is not concrete. The following definition

can be made more general to other underlying set functors, but we will not need to do so

here.

Definition 3.10 (resource theory of states). The resource theory of states st(C) is the cat-
egory whose objects are states in C and whose morphisms (𝐼 𝑠−→ 𝑋) → (𝐼 𝑡−→ 𝑌) are maps

𝑋
𝑓
−→ 𝑌 such that 𝑓 𝑠 = 𝑡 . Composition is as in C.

When C is interpreted a category of types of resources and conversions between them,

we can think of st(C) states as a category of specific resources and of conversions between
them, forgetting the type information.

The resource theory of states has a canonical symmetric monoidal structure induced

by that of C: the monoidal product of states 𝐼
𝑠−→ 𝑋 and 𝐼

𝑡−→ 𝑌 is just the state 𝐼 → 𝑋 ⊗ 𝑌
given by

6

𝑠

𝑋

𝑡

𝑌

,

while the monoidal product of morphisms is just their product in 𝑋 . The unit is the state

1𝐼 , while the associator and unitor are inherited from C.
It will be useful to be a little more general. Let 𝐹 : D → C be a lax monoidal functor.

Then an 𝐹 -state is a pair of𝑋 ∈ D and a map 𝐼 → 𝐹𝑋 in C. The resource theory of 𝐹 -states
st(𝐹) is the category whose objects are 𝐹 -states and whose morphisms (𝐼 𝑠−→ 𝐹𝑋) → (𝐼 𝑡−→
𝐹𝑌) are maps 𝑋

𝑓
−→ 𝑌 in D such that (𝐹 𝑓)𝑠 = 𝑡 . Note what then C = D and 𝐹 = 1C , we

recover st(C).
Since 𝐹 is lax monoidal, there is again general recipe for taking the monoidal product

6
It may worry the careful reader that there are two seemingly distinct, albeit coherently naturally iso-

morphic, morphisms this diagram could represent:

𝐼
𝜆−1
𝐼−−→ 𝐼 ⊗ 𝐼 𝑠⊗𝑡−−−→ 𝑋 ⊗ 𝑌 and 𝐼

𝜌−1
𝐼−−−→ 𝐼 ⊗ 𝐼 𝑠⊗𝑡−−−→ 𝑋 ⊗ 𝑌 .

Fortunately, it is a non-obvious but standard result of Kelly that 𝜆𝐼 = 𝜌𝐼 in any symmetric monoidal cat-

egory [Kel64], so these morphisms agree. As always, it is coherence theorems that make string diagrams

work.

60 Chapter 3. Categorical Cryptography

in this category: given 𝐼
𝑠−→ 𝐹𝑋 and 𝐼

𝑡−→ 𝐹𝑌 , the product of 𝑠 and 𝑡 is the state

𝑠 𝑡

.

𝐹 (𝑋 ⊗D 𝑌)

With a little more machinery
7
: st(𝐹) is the category of elements of the functor D 𝐹−→

C
𝐶 (𝐼 ,−)
−−−−→ Set. In general, the category of elements of a functor 𝐹 : C → Set has as objects

pairs (𝑐, 𝑥) where 𝑐 ∈ 𝐹𝑥 , and as morphisms (𝑐, 𝑥) → (𝑐′, 𝑥′), maps 𝑓 : 𝑐 → 𝑐′ such
that 𝐹 𝑓 (𝑥) = 𝑥′. The category of elements of any lax monoidal functor has a canonical

monoidal structure on it induced by that of the codomain; this is the monoidal structure

with which we endow st(𝐹). Observe the similarity of the monoidal product in st(𝐹) with
the coherence map for the functor 𝐶 (𝐼 ,−) from Example 2.37.

Following [BK22], we are especially interested in the category st(C2 ⊗−→ C). Objects
in this category are morphisms 𝐼 → 𝑋 ⊗ 𝑌 in C, which we can think of as joint states.
When C = Set, every joint state is independent, in that it splits into the product of two

morphisms 𝐼 → 𝑋 and 𝐼 → 𝑌 , but in more complicated categories like PPT or Hilb this

may fail, representing a kind of entanglement. In this way, we can express the idea that

two parties 𝐴 and 𝐵 have a shared uniform random key by the map 𝐼 → 𝑋 ⊗ 𝑋 in PPT

that sends ∗ to a uniform random choice of pairs (𝑘, 𝑘) for 𝑘 ∈ 𝑋 . This map does not split

into a pair of stochastic maps 𝐼 → 𝑋 and 𝐼 → 𝑋 .

Morphisms (𝐼 𝑠−→ 𝑋 ⊗ 𝑌) → (𝐼 𝑡−→ 𝑋 ′ ⊗ 𝑌 ′) in this category are maps (𝑓 , 𝑔) in C2
satisfying (𝑓 ⊗ 𝑔)𝑠 = 𝑡 . The maps 𝑓 and 𝑔 prescribe the computations undertaken by the

respective parties in order to transform the joint state 𝑠 into the joint state 𝑡 . Note that

there is a kind of locality to morphisms in this category, since they are morphisms in the

product category; all of the interaction between the two parties is encoded in the initial

joint state. This separation is actually desirable: it will make it easier for us to reason

about the security of protocols. However, it means we need a way to describe objects

which represent more complicated forms of interaction; we will do so in the next two

sections.

It is worth remarking that more generally, we can model computations on 𝑁 -party

states via the category

st(C𝑁 ⊗𝑁−1−−−−→ C),
where the 𝑖th copy of C represents computations taken by the 𝑖th party in the computa-

tion
8
.

7
With even more machinery: it is the comma category of 𝐼/𝐹 . This definition is useful for higher-

categorical generalizations.

8
There is a choice of associativity to be made, but any choice yields a coherently isomorphic category, so

we will not worry about it here. A standard assumption—justified by the strictification theorem for monoidal
categories, which says that every monoidal category is equivalent to strict one—is that the underlying cat-

egory C is strict.

3.2. Protocols 61

Finally, there is a forgetful functor Π : st(D 𝐹−→ C) → D, which sends a state 𝐼 → 𝐹𝑋

to the object𝑋 and amap to its underlyingmap inD. This functor is strict monoidal, since

the monoidal structure on st(D 𝐹−→ C) is induced by that of D. This functor composes

with 𝐹 to get a forgetful functor with codomain C. We will use these functors to help

organize information about the relationship between these categories.

Proposition 3.11. Let 𝑓 : (𝑥, 𝑠) → (𝑦, 𝑡) be an isomorphism in stC 𝐹−→ D. Then the map 𝑓
in C is an isomorphism in C.

Proof. The result follows from construction of the forgetful functor and the fact that

by Proposition 2.17, functors preserve isomorphism. □

3.2.2 Flat Process Conversions

Recall that we can think of morphisms in 𝑋
𝑓
−→ 𝑌 in C as processes converting 𝑋 to

𝑌 . Before arriving at the more general strategy of [BK22], we first treat a simpler case.

We will construct a category 1-comb(C) of flat process conversions, whose objects are

“type signatures” of processes and whose morphisms are recipes for converting between

processes with the appropriate signatures.

By type signature, we mean a pair of objects (𝑋,𝑌) in C. The idea is that the resource
(𝑋,𝑌) should be “inhabited” by the morphisms 𝑋 → 𝑌 in C. To make this work out,

whatever notion of morphism in 1-comb(C) we end up with, it should be the case that

1-comb(C)(𝐼 , (𝑋,𝑌)) � C(𝑋,𝑌), i.e. that themorphisms 𝐼 → (𝑋,𝑌) in 1-comb(C) should
be in (natural) correspondence with the morphisms 𝑋 → 𝑌 in C.

To make this work out, a morphism (𝑋,𝑌) → (𝑋 ′, 𝑌 ′) in 1-comb(C) consists of the
following structure, called a 1-comb:

𝑋 ′

.

𝑌 ′

𝑋

𝑌

𝜉1

𝜉2

Explicitly, a 1-comb consists of an object 𝑍 and two morphisms 𝜉1 : 𝑋
′ → 𝑋 ⊗ 𝑍 and

𝜉2 : 𝑌 ⊗ 𝑍 → 𝑌 ′. The point is that, if we “plug in” a morphism 𝑋 → 𝑌 for the hole, we

obtain a morphism 𝑋 ′ → 𝑌 ′; 𝑍 represents some auxiliary data that isn’t needed by the

plugged-in morphism. We often call 𝑍 the residual of the comb. It is a theorem of [CFS16]

that in a symmetric monoidal category, any morphism 𝑋 ′ → 𝑌 ′ obtainable as a string

diagram which uses exactly one occurrence of a morphism 𝑓 : 𝑋 → 𝑌 may be obtained

as a 1-comb with 𝑓 filled in the hole.

Composition of 1-combs is defined by “nesting”: given 1-combs (𝑍, 𝜉1, 𝜉2) : (𝑋,𝑌) →
(𝑋 ′, 𝑌 ′) and (𝑍 ′, 𝜉′

1
, 𝜉′

2
) : (𝑋 ′, 𝑌 ′) → (𝑋 ′′, 𝑌 ′′), we have a composite 1-comb (𝑋,𝑌) →

62 Chapter 3. Categorical Cryptography

(𝑋 ′′, 𝑌 ′′) defined by:

𝑋 ′′

.

𝑌 ′′

𝜉 ′
1

𝜉 ′
2

𝜉1

𝜉2

This does indeed form a 1-comb: explicitly, the composite 1-comb is the tuple

((𝑍 ⊗ 𝑍 ′), (𝜉1 ⊗ 1𝑍 ′) ◦ 𝜉′1, (𝜉′2 ⊗ 1𝑍) ◦ 𝜉2).
Meanwhile, the monoidal product of 1-combs is as follows:

.
𝜉1

𝜉2

𝜉 ′
1

𝜉 ′
2

(3.1)

Again, this forms a 1-comb. The identity is the object (𝐼 , 𝐼).
We now return to the assertion from the beginning of the section: since a map 𝐼 → 𝐼

carries no data, a 1-comb (𝐼 , 𝐼) → (𝑋,𝑌) looks like

𝑋

;

𝑌

𝜉1

𝜉2

these are morphisms 𝑋 → 𝑌 , but not bijectively so. To resolve this, we take equivalence

classes of 1-combs, where two 1-combs are equivalent if they yield the same morphism

when any morphism𝑊 ⊗𝑋 →𝑊 ⊗𝑌 is plugged into their hole
9
. Finally, we can formally

define the category.

9
This is an extensional notion of equality of combs. With significantly more machinery, it is also possible

to define combs intensionally, via so-called coend optics [Ril18; HC23]: a 1-comb (𝑋,𝑌) → (𝑋 ′, 𝑌 ′) is
precisely an element of the set

∫ 𝑀∈C C(𝑋 ′, 𝑋 ⊗ 𝑀) × C(𝑌 ⊗ 𝑀,𝑌 ′).

3.2. Protocols 63

Definition 3.12 (category of flat process conversions). The category of flat process conver-
sions 1-comb(C) has as objects pairs (𝑋,𝑌) of objects in C and as morphisms equivalence

classes of 1-combs in C.

Example 3.13. The construction st(1-comb(C)) is the category of parallel-combinable
processes of [CFS16].

Now suppose that 𝐹 : C → D is a strong monoidal functor; recall that this means

there is a natural isomorphism 𝜙𝑋,𝑌 : 𝐹𝑋 ⊗D 𝐹𝑌 → 𝐹 (𝑋 ⊗C 𝑌). Now there is an induced

functor 1-comb(𝐹) : 1-comb(C) → 1-comb(D) which acts on 1-combs by

𝑋 ′

𝑌 ′

𝜉1

𝜉2

↦→

𝐹𝑋 ′

.

𝐹𝑌 ′

𝜉1

𝜉2

Symbolically, the action of 1-comb(𝐹) is

(𝑍, 𝜉1, 𝜉2) ↦→ (𝐹𝑍, 𝜙−1𝑋,𝑍𝐹𝜉1, (𝐹𝜉2)𝜙𝑌,𝑍).

We have that 1-comb(𝐹) preserves identities and composition because 𝐹 does. Further-

more, this construction turns 1-comb into an endofunctor on the category of symmetric

monoidal categories and strong monoidal functors.

Cryptographically, we are primarily interested in the category

st(1-comb(C2)
1-comb(⊗)
−−−−−−−−→ 1-comb(C)).

Objects in this category are maps 𝐼 → (𝑋 ⊗ 𝑌,𝑋 ′ ⊗ 𝑌 ′) in 1-comb(C), hence maps

𝑋 ⊗ 𝑌 → 𝑋 ′ ⊗ 𝑌 ′ in C. Morphisms (𝑋 ⊗ 𝑌
𝑓
−→ 𝑋 ′ ⊗ 𝑌 ′) → (𝐴 ⊗ 𝐵

𝑔
−→ 𝐴′ ⊗ 𝐵′) are 1-combs

(𝑋 ⊗ 𝑌,𝑋 ′ ⊗ 𝑌 ′) → (𝐴 ⊗ 𝐵,𝐴′ ⊗ 𝐵′), which, when the hole is “filled in” with 𝑓 , yield the

morphism 𝑔. The idea is that 𝑓 represents some shared cryptographic resources which

the two parties already have access to; the one-comb is a protocol the parties can use to

transform it into the resource 𝑔.

We emphasize that these 1-combs “live in C2: the morphisms 𝜉1 and 𝜉2 must be in the

image of ⊗. As before, this means that they satisfy a kind of disjointness: they are really

two separate computations running in parallel but independently. All of the interaction

between the two parties is encapsulated in the resource 𝑓 , which is shared between them.

As such, it is a general rule that protocols cannot create extra interactivity on their own;
they need input resources enabling interaction.

64 Chapter 3. Categorical Cryptography

Finally, we note that to model 𝑛-party computation we can work in the category

st(1-comb(C𝑛)
1-comb(⊗𝑛−1)
−−−−−−−−−−→ 1-comb(C)).

As an example, let C = Set, and let 𝑓 be themap𝑋×∗ → ∗×𝑋 given by (𝑥, ∗) ↦→ (∗, 𝑥).
Then 𝑓 is a one-shot channel from the first party to the second party. However, we have

no way to represent protocols which use multiple input resources: our combs only have

one hole. We fix this by working with n-combs.

3.2.3 Linear Process Conversions

The extension from 1-combs to the n-combs of [BK22] is conceptually straightforward,

but technically somewhat messy. An n-comb is just a stack of 1-combs; we can combine

the top of one comb with the bottom of the next, so we may as well write
10

...

𝜉 ′
1

𝜉 ′
2

𝜉 ′
3

𝜉 ′
4

𝜉 ′
2𝑛−1

𝜉 ′
2𝑛

as

...

.

𝜉1

𝜉2

𝜉3

𝜉𝑛

𝜉𝑛+1

10
As with 1-combs, there is a more abstract definition of n-combs using coend optics: an n-comb

[(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)] → (𝑋 ′, 𝑌 ′) is an element of the set∫ 𝑀1,...,𝑀𝑛∈C
C(𝑋 ′, 𝑋1 ⊗ 𝑀1) ×

𝑛−1∏
𝑖=1

C(𝑌𝑖 ⊗ 𝑀𝑖 , 𝑋𝑖+1 ⊗ 𝑀𝑖+1) × C(𝑌𝑛 ⊗ 𝑀𝑛, 𝑌
′).

3.2. Protocols 65

Again by a theorem of [CFS16], any circuit which is obtainable as a string diagram using

exactly one occurance of each of a list of 𝑛 morphisms can also be obtained as the result

of plugging those morphisms in to an appropriate n-comb.

Generalizing the case of 1-combs, the objects in the category of n-combs should be

finite lists of pairs of objects: a resource of type [(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)], hence a morphism

from the empty list to this list, should correspond to a list of maps 𝑋𝑖 → 𝑌𝑖 in C. We can

proceed directly to defining the category, but we find it easier to first define a symmetric

multicategory of combs. The advantage is that this requires us only to define morphisms

with one pair in the codomain—what [BK22] call the “basic morphisms”—and then con-

struct a full symmetric monoidal category via a general procedure.

Objects in this multicategory are pairs of objects in C. Morphisms

[(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)] → (𝑋 ′, 𝑌 ′)

consist of a permutation 𝜎 ∈ 𝑆𝑛 and an n-comb

...

𝑋𝜎 (1)

𝑌𝜎 (1)

𝑋𝜎 (𝑛)

𝑌𝜎 (𝑛)

𝑋 ′

𝑌 ′

.

𝜉1

𝜉2

𝜉𝑛

𝜉𝑛+1

The idea is that 𝜎 encodes the order in which the protocol uses the input resources; we

do not have to use them in the order specified by the domain list. Composition of gen-

eral combs is as with 1-combs: given an n-comb and n combs such that the types line

up, we nest each of the combs into the outer n-comb. This indeed gives us a symmetric

multicategory.

We can now use the following general construction to obtain the category of n-combs:

Definition 3.14. Let C be a (symmetric) multicategory. Then there is an associated strict

(symmetric) monoidal category C⊗ defined as follows:

• an object in C⊗ is a finite list of objects in C, written 𝑥1 ⊗ · · · ⊗ 𝑥𝑛;

66 Chapter 3. Categorical Cryptography

• a morphism 𝑥1 ⊗ · · · ⊗ 𝑥𝑛
𝑓
−→ 𝑦1 ⊗ · · · ⊗ 𝑦𝑚 consists of a function 𝛼 𝑓 : {1, . . . , 𝑛} →

{1, . . . ,𝑚}, called the partition function, and for each 𝑖 ∈ {1, . . . ,𝑚}, a morphism

𝑥𝑘1, . . . , 𝑥𝑘𝑙
𝑓𝑖−→ 𝑦𝑖,

called the 𝑦𝑖 component, where the 𝑘 𝑗s range over 𝛼−1𝑓 (𝑖);

• the composite morphism 𝑥1 ⊗ · · · ⊗ 𝑥𝑛
𝑓
−→ 𝑦1 ⊗ · · · ⊗ 𝑦𝑚

𝑔
−→ 𝑧1 ⊗ · · · ⊗ 𝑧𝑝 is given by

the partition function 𝛼𝑔𝑓 = 𝛼𝑔𝛼 𝑓 and for each 𝑧𝑖 , the component

𝑔𝑖 ◦ (𝑓𝜎𝑖 (1), . . . , 𝑓𝜎𝑖 (𝑘))

in C, where 𝜎𝑖 is from 𝑔;

• the identity on 𝑥1 ⊗ · · · ⊗ 𝑥𝑛 is given by the identity partition and the identities 1𝑥𝑖

from C;
• the monoidal product of 𝑥1 ⊗ · · · ⊗𝑥𝑛 and𝑦1 ⊗ · · · ⊗𝑦𝑚 is given by the concatenation

𝑥1 ⊗ · · · ⊗ 𝑥𝑛 ⊗ 𝑦1 ⊗ · · · ⊗ 𝑦𝑚;

• the monoidal product of 𝑥1⊗· · ·⊗𝑥𝑛
𝑓
−→ 𝑦1⊗· · ·⊗𝑦𝑚 and 𝑧1⊗· · ·⊗𝑧𝑝

𝑔
−→ 𝑤1⊗· · ·⊗𝑤𝑞

is given by lifting the partitions to the disjoint union, so the 𝑦𝑖 component is just 𝑓𝑖
while the𝑤𝑖 component is just 𝑔𝑖 .

The idea is that each object in 𝑥1 ⊗ · · · ⊗ 𝑥𝑛 ∈ C⊗ represents the presence of the

“resources” represented by the objects 𝑥1, . . . , 𝑥𝑛 ∈ C. A morphism must consume pre-

cisely one “copy” of each resource in that list and produce one copy of each resource in its

codomain. The partition 𝛼 is an allocation of input resources to output resources: 𝛼−1(𝑖)
is exactly the input resources used to produce the resource 𝑦𝑖 .

We can be explicit about what this construction looks like in the case of n-combs.

Definition 3.15. Objects in the category n-comb(C) are finite lists of pairs of objects in
C. A morphism [(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)] → [(𝑋 ′1, 𝑌 ′1), . . . , (𝑋 ′𝑚, 𝑌 ′𝑚)] is a list of𝑚 combs, one

for each pair of objects in the codomain, and each of which has holes typed by the pairs in

the domain, such that each pair in the domain is used in exactly one comb and exactly once
in that comb. Composition is by nesting, while the monoidal product is by concatenation

of lists.

Example 3.16. The category st(n-comb(C)) is the category of universally combinable
processes of [CFS16].

Furthermore, n-comb is functorial in the sameway as 1-comb. Given a strongmonoidal

functor 𝐹 : C → D, we can define a functor n-comb(𝐹) : n-comb(C) → n-comb(D) by

3.2. Protocols 67

acting on each n-comb over C by

...

𝜉1

𝜉2

𝜉𝑛

𝜉𝑛+1

↦→ ...

.

𝜉1

𝜉2

𝜉𝑛

𝜉𝑛+1

Cryptographically, still following [BK22] we are interested in the category

prot𝑁 (C) := st(n-comb(C𝑁)
n-comb(⊗𝑁−1)
−−−−−−−−−−−→ n-comb(C)),

which is a category of 𝑁 -party protocols with computations from C. Objects in this cat-

egory are finite lists of maps

𝑋 𝑖
1
⊗ · · · ⊗ 𝑋 𝑖𝑁

𝑓𝑖−→ 𝑌 𝑖
1
⊗ · · · ⊗ 𝑌 𝑖𝑁

in C, which represent shared access to the resources {𝑓𝑖}, themselves processes for trans-

forming joint states in C. Morphisms are lists of combs, so that each map 𝑓𝑖 in the domain

list is allocated to exactly one comb, and so that plugging in all the 𝑓𝑖s into the appropriate

combs yields exactly the list of maps in the codomain.

Here is a convenient way to think about the situation, to our knowledge original to

us. A map in n-comb(C) is a “schema for a protocol”. We can look at its fiber
11
under the

functor

n-comb(⊗𝑁−1)Π : prot𝑁 (C) → n-comb(C)

to determine what the schema does when instantiated with a specific kind of resource. In

some cases, as in the next section, we only care about the maps in prot𝑁 (C) with some

specific domain and codomain, and are interested in verifying that there is an element

11
The fiber 𝐹 −1 𝑓 of a functor 𝐹 : C → D over a morphism 𝑓 ∈ D is collection of morphisms 𝑔 ∈ C such

that 𝐹𝑔 = 𝑓 .

68 Chapter 3. Categorical Cryptography

in the fiber with that correct type: this is a correctness property of a protocol. However,

there are more complicated situations where we want to verify that the same protocol

behaves in one way given an input of some type, and in another way given another input;

in this case the expanded perspective provided by the forgetful functor can be useful for

organizing the data.

3.2.4 The One-Time Pad
As a first example, we work out in full detail the categorical description of the one-time

pad due to [BK22]. For now, let C = CompStoch and 𝑁 = 3; we label the three parties

𝐴, 𝐵, and 𝐸. We pick a message space 𝑀 ∈ C; we could just say 𝑀 = {0, 1}∗, but instead
let us figure out what “local” structure, by which we mean structure in C which is hence

usable by each of the parties on their own,𝑀 needs to have.

First, we should be able to copy and delete messages from 𝑀 ; they’re just classical

information. We represent this with a pair of maps

𝑀 𝑀

𝑀

and
𝑀

,

called the copy and deletion maps. Copying is associative (category theorists call this

coassociativity, because it is opposite to the direction of normal associativity):

= (3.2)

and commutative (cocommutativity):

=

;

(3.3)

deletion is the inverse of copying (counitality)12:

= =

.

(3.4)

These three equations give𝑀 the structure of a cocommutative comonoid in C.
12
We do not need to axiomatize both sides of this equality when we have commutativity.

3.2. Protocols 69

We often want to work over categories in which every object has such copy and delete

maps. We say that a symmetric monoidal category C supplies cocommutative comonoids
if every object in C is a cocommutative comonoid in such a way that the comonoidal

structure on any object 𝑋 ⊗ 𝑌 is induced from that on 𝑋 and 𝑌 by the monoidal product.

We are now very close to the definition of aMarkov category, which is a natural categorical
axiomatization of stochastic computation [Fri20].

Recall from Example 1.21 the one-time pad works over an arbitrary group𝐺 . As such,

we separately need that𝑀 looks like a group in C: it should have multiplication, unit, and

inverse maps

𝑀 𝑀
,

𝑀

,

𝑀

and

𝑀

𝑀
,

which are associative and unital in the sense of Definition 2.33 and satisfy the additional

inverse law:

= =

.

(3.5)

Notice that this law relies on the existence of the copy and delete maps; indeed, it is not

possible to define a group without some way to talk about copying.

We need one more compatibility law, which says essentially that multiplication is

deterministic: performing the same multiplication twice is the same as performing it once

and then copying the result:

=

.

(3.6)

Finally, for the one-time pad we need some way to model randomness; in CompStoch

this is the map 𝐼
$−→ 𝑀 which draws a uniform random value from𝑀 . Categorically, rather

than the specific construction of the map, we care about its properties
13
: it is invariant

13
The laws (3.2) to (3.6) give𝑀 the structure of a Hopf object in C. It turns out that these objects are well-

known, and in particular have important applications in quantum computation [Fel17]; for instance, a Hopf

object in Vectk is just an ordinary Hopf algebra. This is a major advantage of the categorical machinery:

we discover unexpected connections between different kinds of computation and mathematics.

Somewhat surprisingly, elements of Hopf algebras satisfying (3.7) and (3.8) have been well studied under

the name integrals [Swe69; Lom04; Sul71]. As such, the one-time pad can be instantiated over any Hopf

algebra 𝐻 with an integral, by replacing the uniform random choice of key with the map k → 𝐻 which

sends 1 to the chosen integral. This translation is purely syntactic; everything we will say about the one-

time pad applies to this construction as well. We can now start doing cryptography inside a Hopf algebra,

or using the theory of Hopf algebras to learn about cryptography.

70 Chapter 3. Categorical Cryptography

under multiplication, in the sense that

$

=
$

=
$

,
(3.7)

and it is independent, in the sense that (recalling that the empty diagram denotes the map

1𝐼)

$

equals the empty diagram. (3.8)

We interpret (3.7) as saying that the product of any group element with a uniform ran-

dom value is uniform random, while (3.8) says that creating and then deleting a uniform

random value does nothing.

All this is just the local structure. To implement the one-time pad, we need two shared

resources. First,𝐴 and 𝐵 should have a shared random key drawn from𝑀 . In CompStoch,

this is the map 𝐼 → 𝑀 ⊗𝑀 ⊗ 𝐼 which draws uniformly at random from the set {(𝑘, 𝑘, ∗) :
𝑘 ∈ 𝑀}. Diagramatically, we can build this map as

$

,

𝐴 𝐵

where we now label the wires with the party in possession of the data, so that for instance

a wire labeled 𝐴 has type 𝑀 ⊗ 𝐼 ⊗ 𝐼 , while the two parallel wires labeled 𝐴 and 𝐵 have

type 𝑀 ⊗ 𝑀 ⊗ 𝐼 . This is a map in C which cannot be written in C3, because it does not
factor into a product of three separate maps in C.

We also need a way for 𝐴 to send the encoded message to 𝐵 and 𝐸. In CompStoch,

this is the map 𝑀 ⊗ 𝐼 ⊗ 𝐼 → 𝐼 ⊗ 𝑀 ⊗ 𝑀 given by (𝑐, ∗, ∗) ↦→ (∗, 𝑐, 𝑐). Again, this can be

represented using the structure defined above, as the map

𝐴
.

𝐸 𝐵

It is a good exercise in string diagram comprehension to spell out this map symbolically.

Assuming we chose to left-associate the functor ⊗2 in the definition of prot
3
(C), one way

to write it is as the map

(𝑀 ⊗ 𝐼) ⊗ 𝐼
𝜌𝑀⊗𝐼−−−−→ 𝑀 ⊗ 𝐼

𝛾𝑀,𝐼−−−→ 𝐼 ⊗ 𝑀
1𝐼⊗copy−−−−−−→ 𝐼 ⊗ (𝑀 ⊗ 𝑀)

𝛼−1
𝐼 ,𝑀,𝑀−−−−→ (𝐼 ⊗ 𝑀) ⊗ 𝑀.

Themagic of the coherence theorem is that, once we agree on a choice of associativity, any

way ofwriting thismap is the same, and sowe canworkwith the far simpler diagrammatic

notation.

3.2. Protocols 71

From all this, we learn that the domain of the one-time pad should be the object

$

𝐴 𝐵

⊗
𝐴

𝐸 𝐵

(3.9)

of prot
3
(C). The goal of the one-time pad is to produce a channel from 𝐴 to 𝐵, so the

codomain should be the object

𝐴
.

𝐵

(3.10)

The readermay now object that the one-time pad does not give the eavesdropped no infor-

mation, as they learn that a message was sent. However, we are not yet attempting to deal

with adversarial behavior, so any protocol can simply have Eve forget that information.

We will discuss this issue at length in Section 3.3.

For a second, let us not worry about preserving states, and just think in the category

n-comb(C). Recall that the objects in this category are finite lists of pairs of objects in C.
The domain of the one-time pad should be

[(𝐼 ⊗ 𝐼 ⊗ 𝐼 , 𝑀 ⊗ 𝑀 ⊗ 𝐼), (𝑀 ⊗ 𝐼 ⊗ 𝐼 , 𝐼 ⊗ 𝑀 ⊗ 𝑀)],

while the codomain should be

[(𝑀 ⊗ 𝐼 ⊗ 𝐼 , 𝐼 ⊗ 𝑀 ⊗ 𝐼)] .

A morphism between these should be a 2-comb which takes morphisms of the domain

types and produces a morphism of the codomain type. In other words, given two “black

box” maps

𝐴 𝐵

and

𝐸 𝐵

𝐴

,

the 2-comb must produce a map

𝐴
.

𝐵

The easiest such 2-comb to write,

𝐵

𝐴

𝐸
𝐴 𝐵

,

72 Chapter 3. Categorical Cryptography

represents simply sending the message unencrypted, without use of the key. Note that

the theory does require us to explicitly forget the key, as n-combs must consume all their

input resources. We will alleviate this requirement soon.

Now the schema for the one-time pad is the 2-comb

𝐴

𝐴

𝐴

𝐵

𝐵

𝐸

𝐵
.

𝐵

This is a morphism in n-comb(C). To check that this protocol is correct, we need to

check that it sends the state (3.9) to the state (3.10), i.e. that it is a morphism with the right

type in prot
3
(C). Substituting the actual resources in for their generic counterparts, we

get the protocol

𝐴

𝐴

$

𝐵
𝐵

𝐵

𝐵
.

𝐸

Now we compute, using counitality, associativity, the inverse law, unitality, and the inde-

3.2. Protocols 73

pendence of random choice:

𝐴

𝐴

$

𝐵
𝐵

𝐵

𝐵

𝐸

(3.4)

=

𝐴

$

𝐵

(2.2)

=

$

𝐴

𝐵

(3.5)

=

$

𝐴

𝐵

(2.3)

=
$

𝐴

𝐵

(3.8)

=

𝐴
.

𝐵

This computation proves that the one-time pad is a morphism (3.9)→ (3.10) in prot
3
(C);

this is the categorical statement of the correctness of the one-time pad.

We reiterate that the entire preceding discussion relies only on the existence of an

object satisfying the axioms (3.2) to (3.8). The one-time pad can be correctly implemented

in any category over any object with this structure.

Of course, this entire discussion assumes that Eve does as the protocol instructs and

simply deletes the message they read. If they do not, we need another layer of analysis,

dealing with adversarial behavior. That will be the subject of Section 3.3.

74 Chapter 3. Categorical Cryptography

3.2.5 Extensions to the Framework

Reusable Resources

In the title of Section 3.2.3, we called n-comb(C) a category of linear process conversions.
This is because each input resource is used exactly once in the list of n-combs. While it

is often valuable to have this restriction enforced by the syntax, there are cases where

we want to model reusable resources. As suggested by [BK22], we can straightforwardly

modify the construction to account for this by making two changes.

First, recall that in the definition of an n-comb at the beginning of Section 3.2.3, the

permutation 𝜎 determines the order in which the input resources are used. For an 𝑛-comb

with𝑚 input resources, we can replace this permutation with a function 𝑛 → 𝑚 which

assigns to each comb the type of the resource which will fill it. In this way, we can use

each resource as many times as we want, including not at all.

However, this is not enough, as in the category n-comb(C) morphisms are lists of

n-combs, and the current definition allocates each input resource to exactly one of these

combs. One advantage of our choice to use the intermediate step of a multicategory is

that we can make the required change directly to the construction in Definition 3.14.

When defining morphisms in this category, we used a partition function 𝛼 to assign input

resources to output resources. By allowing this function to be a relation, we can allow

each input resource to be assigned to multiple output resources. When C is a symmetric

multicategory, we call this category C⊗!. Combining these two modifications yields the

category n-comb!(C) of [BK22].
We suspect that their choice of notation ! is not accidental: inmanyways, this category

behaves like the exponential modality ! of linear logic. In linear logic [Gir87], hypotheses

must be used once and only once. The ! modality allows a hypothesis to be used any

number of times; this allows controlled intuitionistic reasoning with linear frameworks,

hence allowing linear logics to be both as expressive as intuitionistic logic, and to have

fine-grained control over resource usage. In the case of n-combs, however, we currently

have two separate categories n-comb(C) and n-comb!(C), so if we want to model cryp-

tosystems that have some multi-use resources and some single-use resources, we need

some way to relate them. We give an original solution in Definition 3.17, but first we

digress to discuss the categorical semantics of linear logic, which motivate our construc-

tion. This explanation uses some categorical terminology we have not introduced, but the

reader may safely skip directly to the definition.

Any symmetricmonoidal categoryL forms amodel of themultiplicative-intuitionistic

fragment of linear logic [Mel09]. In such settings, ! can be modeled by a lax monoidal

comonad ⟦!⟧ together with natural transformations ⟦!⟧𝑥 → 𝐼 , and ⟦!⟧𝑥 → ⟦!⟧𝑥 ⊗ ⟦!⟧𝑥 .
This data is subject to a coherence axiom given in [Mel09, Equation 72].

The modern perspective, motivated by [Ben95], is to focus on resolutions of this

comonad, i.e. monoidal adjunctions

I ⊥ L

𝐹

𝐺

3.2. Protocols 75

such that 𝐹𝐺 = ⟦!⟧, and in particular on resolutions such that the monoidal structure on

I is cartesian, hence a model of conjunctive intuitionistic logic
14
. It turns out that any

monoidal adjunction between categories with this structure gives the necessary structure

on the comonad 𝐹𝐺 ; as a consequence, such adjunctions are called linear-non-linear. In
this way, 𝐹 is an embedding of intuitionistic terms as linear terms, while 𝐺 forgets the

linearity of a term. A standard example of this structure is the free-forgetful adjunction

between Set and Vectk [VZ14]. Linear-non-linear adjunctions have been widely used for

designing resource-aware programming languages [MAF05; KPB15; Pay18; LMZ19].

All this machinery suggests that, to give a system which allows simultaneous reason-

ing about both single- and multi-use resources, we should look for such an adjunction.

There is indeed a forgetful functor 𝐺 : n-comb(C) → n-comb!(C), which we may think

of as forgetting the linearity of an n-comb. Furthermore, the category n-comb!(C) is
cartesian monoidal, meaning that the concatenation of two lists is a cartesian product;

the projections simply do not use the extra resource, while the universal property is wit-

nessed by concatenating lists of n-combs. As such, n-comb!(C) is a model of conjunctive

intuitionistic logic; it represents an intuitionistic, rather than linear, calculus of resources.

However, the functor𝐺 seems unlikely to be a right adjoint
15
. The issue is that combs

between the same two objects in n-comb!(C) may use different numbers of resources,

and so ought to be sent to different objects in n-comb(C), but this is impossible for any

functor. To resolve this, we need a notion of intuitionistic resource internal to n-comb(C).
A solution may perhaps be along the lines of the ∞-combs of [Rom20], which are used

there to model stream-like data, but these have slightly differently-structured domains

and codomains than n-combs, so the translation is not obvious.

Our technical contribution is a more direct solution, extending n-comb(C) with ob-

jects !(𝐴, 𝐵), which represent reusable resources of type 𝐴 → 𝐵 and are used to build

n-combs as in n-comb!(C).

Definition 3.17. Objects in the category n-comb
∗(C) are finite multisets

16
of pairs (𝐴, 𝐵)

and/or !(𝐴, 𝐵) of objects in C, called linear and reusable resources respectively. Given four
finite disjoint index sets 𝐼 , 𝐽 , 𝐾, and 𝐿, we now describe morphisms

{!(𝐴𝑖, 𝐵𝑖), (𝐶 𝑗 , 𝐷 𝑗) : 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 } → {!(𝑋𝑘 , 𝑌𝑘), (𝑍𝑙 ,𝑊𝑙) : 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿}.

To construct such a morphism, we first give a relation 𝛼 ⊆ (𝐾 ⊔ 𝐿) × (𝐼 ⊔ 𝐽) such that:

1. each 𝑗 ∈ 𝐽 𝛼-relates to exactly one element;

2. each 𝑘 ∈ 𝐾 𝛼-relates only to elements in 𝐼 .

Next, for each 𝑘 ∈ 𝐾 , we give a morphism from n-comb!(C), whose domain is the multiset

{(𝐴𝑖, 𝐵𝑖) : 𝑖 ∈ 𝛼 (𝑘)} and whose codomain is (𝑋𝑘 , 𝑌𝑘). Finally, for each 𝑙 ∈ 𝐿, we first give
14
Normally we consider such situations with significantly more structure than just the multiplicatives,

but the situation is the same even in this case.

15
I would like, but do not have, an explicit construction of a limit which𝐺 does not preserve; the issue is

that it seems hard for n-comb(C) to have very many limits in the first place.

16
We use multisets instead of lists to simplify the monoidal structure; since all our categories and multi-

categories are symmetric, the distinction is not important.

76 Chapter 3. Categorical Cryptography

for some 𝑛 a function 𝜎 : 𝑛 → 𝛼 (𝑙), such that for each 𝑗 ∈ 𝐽 ∩ 𝛼 (𝑙), the set 𝜎−1(𝑗) is a
singleton. We then give a comb which uses the resources in 𝛼 (𝑗) according to the order

assigned to them by 𝜎 ; note that this is not necessarily a morphism in n-comb(C), because
it can use reusable resources multiple times.

The definition is justified as follows. The first condition on 𝛼 ensures that each lin-

ear resource must be used in exactly one comb, while the second ensures that we can

only build reusable resources out of reusable resources. We build reusable resources as

in n-comb!(C), which was constructed specifically for that purpose. To build linear re-

sources, we can use reusable resources as many times as we want, but must use linear

resources exactly once, hence the condition on 𝜎 .

Another semantic digression: this category is strict symmetric monoidal with the

union of multisets as the product and the empty set as the identity. Furthermore, there is

a linear-non-linear adjunction

n-comb!(C) ⊥ n-comb
∗(C),

𝐹

𝐺

where 𝐺 forgets the difference between linear and reusable resources, and 𝐹 sends all

resources to reusable ones. To show this is an adjunction, observe that all the restrictions

on the construction of the combs are on the use of linear resources in the domain. As such,

when all the resources in the domain are reusable, a morphism in n-comb
∗(C) is exactly a

morphism in n-comb!(C); thus the identities give a natural isomorphism between adjoint

hom-sets.

This may seem like abstract nonsense, but the point is that the theory guided us in

constructing a category which models protocols relying on both linear and multi-use re-

sources; this is likely of independent interest to other uses of n-combs. We conjecture that

this style of construction extends to graded linear logic (in which resources can have a

bounded number possible uses) [GSS92], affine logic (in which resources must be used at

most once) [Tro92], relevance logic (inwhich resourcesmust be used at least once) [DR83],

ordered logic (in which resources must be used in a specific order) [Lam58], and to other

such substructural resource logics. The general paradigm of adjoint logic [Pru+18] pro-

vides categorical semantics for embedding many of these logics in each other; giving

“comb-like” constructions of such categorical structures would allow reasoning about

resource-bounded protocols with fairly sophisticated resource-usage constraints.

As a final notational point, we modify prot𝑁 (C) as prot!𝑁 (C) and prot∗𝑁 (C) by replac-
ing all the invocations of n-comb with n-comb! and n-comb

∗
, respectively. In particular,

these constructions are both functorial in the same way as n-comb.

Shading Diagrams

While [BK22] choose to label the wires with the identities of the parties in possession of

that data, we worry that this approach does not easily scale to protocols where multiple

3.2. Protocols 77

objects are relevant. We now give an alternative approach using the shaded boxes of

Section 2.2.5. In addition to being less cluttered, this approach has a fairly pleasant abstract

justification, though we emphasize that it is merely a syntactic distinction.

We begin by noting that, in addition to the monoidal product

C𝑁 ⊗𝑁−1−−−−→ C,

there are also strong monoidal projection functors

C𝑁 𝜋𝑖−→ C.

Instead of labelling each wire with the party, we can shade the wires according to the

projection functors that they live in the image of. For instance, if Alice is blue, Bob is

green, and Eve is red, then the one-time pad can be depicted as

$

𝐴

𝐵

𝐸

.

We like the visual clarity provided by this approach; it emphasizes the flow of infor-

mation and control between the parties in the protocol. As mentioned, it also has a nice

justification in terms of the functorial boxes studied previously; unifying analogous nota-

tions is always valuable. However, we see two potential issues. First, as usual with color

in diagrams, there are accessibility concerns; while we attempt to ameliorate these by

labelling the regions and using an accessible colorscheme due to [Tol21], such measures

can only go so far. Second, this approach is hard to scale to settings with many parties, as

there are only so many visually distinct colors. As such, we think that both approaches

have their place.

Parties With Differing Capabilities

It is quite common in cryptography to consider settings where different parties have dif-

ferent capabilities. For instance, we may want to analyze classical protocols which are se-

cure against quantum attackers or zero-knowledge proofs with polynomial verifiers and

unbounded provers. While the attack models of [BK22], to be studied in Section 3.3.1, al-

low treating adversaries with different capabilities from the honest parties, the paper does

not directly address honest parties with different capabilities. This can be done within

their framework using the categories we constructed in Section 3.1.

As an example, we construct the category of protocols with one unbounded but de-

terministic party and one PPT party. Recall that unbounded deterministic computation is

modeled in the category Comp, while PPT computation is modeled in the category PPT.

78 Chapter 3. Categorical Cryptography

Both of these include as subcategories into C = CompStoch; call these inclusion functors

𝑖 and 𝑗 . As such, we can construct the category

st(n-comb(Comp × PPT)
n-comb(𝑖× 𝑗)
−−−−−−−−−→ n-comb(C2)

n-comb(⊗)
−−−−−−−−→ n-comb(C)).

In general, assuming there is a clear ambient category C of into which all the relevant

categories include, we write

prot𝑁 (C1, . . . , C𝑁) := st(n-comb(
𝑁∏
𝑖=1

C𝑖) ↩→ n-comb(C𝑁)
n-comb(⊗𝑁−1)
−−−−−−−−−−−→ n-comb(C)).

We define prot!𝑁 (C1, . . . , C𝑁) and prot
∗
𝑁
(C1, . . . , C𝑁) similarly.

Joint Input

While the objects in the category prot𝑁 (C) are morphisms representing joint computa-

tions in C, the domains and codomains of these computations are 𝑁 -fold monoidal prod-

ucts of objects in C, and so cannot themselves be entangled. However, it is extremely

common in cryptography to want to represent joint or otherwise correlated input. For

instance, if C = Set, we may only care about inputs from a subset {(𝑥, 𝑥)} ⊆ 𝑋 × 𝑋 . In
the framework as described, it is impossible to restrict inputs in such a way that does not

decompose into a product.

There are various ad-hoc low-tech solutions to this problem, such as giving the par-

ties an oracle which rejects bad inputs, but we can also modify the construction of our

categories to allow for this kind of entangled input to resources. Our goal will be to define

a category of refinements on joint states which will allow us to refine the domains of our

resources.

What is the categorical notion of subset? Every subset𝐴 ⊆ 𝑋 comes with an inclusion
function 𝑖 : 𝐴 ↩→ 𝑋 , which is always an injection. As usual, the categorical approach

is to forefront the role of the morphism, in this case the injection. It turns out there

is a categorical generalization of injections which makes no reference to objects having

elements: a morphism 𝑓 : 𝑥 → 𝑦 is amonomorphism if for all objects 𝑧 andmaps𝑔, ℎ : 𝑧 →
𝑥 , if 𝑓 𝑔 = 𝑓 ℎ, then 𝑔 = ℎ. In the category of sets, monomorphisms are exactly injections.

Given two monomorphisms 𝑖 : 𝑦 ↩→ 𝑥 and 𝑗 : 𝑧 ↩→ 𝑥 , we say that 𝑖 ≤ 𝑗 if there is a

(necessarily unique) morphism 𝑘 : 𝑦 ↩→ 𝑧 such that

𝑦 𝑥

𝑧

𝑖

𝑘
𝑗

commutes. A subobject of 𝑥 is an equivalence class of monomorphisms into 𝑥 under the

relation 𝑖 ∼ 𝑗 if 𝑖 ≤ 𝑗 and 𝑗 ≤ 𝑖 .
To make a category of subobjects, we need a way to talk about morphisms between

subobjects of different objects. It turns out that in many categories there is a way to talk

about images of subobjects under morphisms, though we have not given the background

3.2. Protocols 79

to go into detail here
17
. We write 𝑓∗𝑖 for the image of 𝑖 under the morphism 𝑓 ; in all our

examples, this is the familiar image of a subset.

Now we define the category pred(C) of predicates on objects in C. Objects in this

category are pairs (𝑥, 𝑖) where 𝑥 ∈ C and 𝑖 is a subobject of 𝑥 . Morphisms (𝑥, 𝑖) → (𝑦, 𝑗)
are maps 𝑓 : 𝑥 → 𝑦 in C such that 𝑓∗𝑖 ≤ 𝑗 , i.e. so that the image of 𝑖 under 𝑓 is contained

in 𝑗 . Composition and identities are as in C.
More generally, as with state we define pred(C 𝐹−→ D) for any functor. Objects are

pairs (𝑥, 𝑖) where 𝑥 ∈ C and 𝑖 is a subobject of 𝐹𝑥 , while morphisms are maps 𝑓 : 𝑥 → 𝑦

in C such that (𝐹 𝑓)∗𝑖 ≤ 𝑗 .
If 𝐹 is strong monoidal and ⊗D preserves monomorphisms (as it does in all our cate-

gories of interest), then this category is also monoidal, with the structure induced by the

respective monoidal structures:

(𝑥, 𝑖) ⊗ (𝑦, 𝑗) = (𝑥 ⊗C 𝑦, (𝑖 ⊗D 𝑗)𝜙−1𝑥,𝑦).

Given a (strong monoidal) functor 𝐹 : C → D, there is a (strong monoidal) functor

pred(𝐹) → pred(D), which due to the notational ambiguity
18

we call 𝐹 . This functor

sends a predicate (𝑥, 𝑖) to the predicate (𝐹𝑥, 𝑖), and a map 𝑓 to the map 𝐹 𝑓 .

Given a symmetric monoidal category C, consider the category

prot𝑁 (C) := st(n-comb(pred(⊗𝑁−1))
n-comb(⊗𝑁−1)
−−−−−−−−−−−→ n-comb(pred(C))) .

Basic objects in this category consist of a subobject 𝑖 of 𝑋1 ⊗ · · · ⊗ 𝑋𝑁 , a subobject 𝑗 of

𝑌1 ⊗ · · · ⊗ 𝑌𝑁 , and a morphism 𝑓 : 𝑋1 ⊗ · · · ⊗ 𝑋𝑁 → 𝑌1 ⊗ · · · ⊗ 𝑌𝑁 in C such that 𝑓∗𝑖 ≤ 𝑗 .
The domain and codomain of this map are refinements of a product state, which specify

the allowable input and output states; the map must send allowable inputs to allowable

outputs. Objects in this category are finite lists of basic objects. Morphisms are lists of

n-combs in C𝑁 whose domains and codomains may be augmented with predicates, and

whose maps must respect those predicates. We define prot! and prot

∗
similarly.

We expect that most readers are somewhat overwhelmed by the proliferation of con-

structions on categories; this is quite understandable. However, once this initial concep-

tual barrier is overcome, this proliferation of constructions is actually very helpful; they

allow us to fine-tune our base category for any specific use-case.

3.2.6 Interactive Proof
Wenow give an original representation of interactive proofs within the framework. Recall

from Section 1.2.3 that an interactive proof for a language L consists of a prover and a

verifier, both given an input 𝑥 , such that the verifier accepts if 𝑥 ∈ L and does not if

𝑥 ∉ L, even if the prover is behaving maliciously. While we do not yet know how to

17
For the categorically inclined: we have inmind a factorization systemwhose right class is themonomor-

phisms. The direct image of a subobject 𝑖 : 𝑧 ↩→ 𝑥 under a map 𝑓 : 𝑥 → 𝑦 is the monic part of the

factorization of 𝑓 𝑖 .
18
Observe that pred is not functorial. Given a functor 𝐹 : C → D, the natural thing is to define a functor

pred(C) → pred(D) which sends (𝑥, 𝑖) to (𝐹𝑥, 𝐹𝑖), but 𝐹𝑖 is not necessarily a monomorphism.

80 Chapter 3. Categorical Cryptography

model malicious behavior, we are already able to model the honest case. Fix a universe of

strings 𝐴 and a decidable
19
language L. This can be made significantly more general, but

for simplicity we will work over the category CompStoch, and let the verifier be bounded

in PPT. We will work in the category prot

∗
2
(CompStoch, PPT).

We need to know what the input and output resources of an interactive proof should

be. Certainly we need a two-way channel between the prover and verifier. Since our

proofs are interactive, this needs to be multi-use, so the domain should be the resource

!

𝑃

𝑉

⊗ !

𝑉
.

𝑃

As output, the protocol should give a resource such that, on an input (𝑥, 𝑥) : 𝑥 ∈ 𝐴,
the verifier outputs 1L (𝑥). Thanks to our work in the previous section, we know how to

encode this: the input to this resource should be the subset {(𝑥, 𝑥)} ⊆ 𝐴 ⊗𝐴. To describe
this input constraint pictorially, we want a box

𝐴 𝐴

𝐴

Input

such that doing some separate computations on each of the outputs, and then swapping

the results, is the same as doing the same computations on the other side, i.e. for all

𝑓 : 𝐴→ 𝑋 and 𝑔 : 𝐴→ 𝑌 ,

𝐴

𝑋𝑌

Input

𝑓 𝑔

=

𝐴

.

𝑌 𝑋

Input

𝑔 𝑓

(3.11)

Given such correlated inputs, our interactive proof should output a value of ∗ ⊗ {0, 1};
the prover has no output, while the verifier outputs either to accept or reject. In other

words, the n-comb should have codomain (Input, 1∗⊗{0,1}); these are both monomor-

phisms into products, hence objects in pred(⊗). The actual resource we want to produce

is the map

𝑃

𝑉 ,

{0, 1}

𝐴

Input

1L

19
Note that L needs to be decidable so that its characteristic function is in CompStoch, which allows

us to represent it as a resource. This restriction can technically be relaxed if we choose a bigger ambient

category of computations, even while still requiring our prover to be computable.

3.3. Security 81

where the prover is blue and the verifier is green. The point is that a correct interactive

proof should amount to the prover doing nothing with its input, while the verifier outputs

the characteristic function of the language under proof.

We emphasize that this definition has no security properties; it does not even guaran-

tee completeness. For instance, directly from (3.11) we can see that

𝑃

𝑉 ,

𝑉 {0, 1}

𝐴

1L

Input

the protocol where the prover just sends the answer to the verifier, is correct.

The reader may wonder which type the channels carry; this is a good question, and we

have actually been imprecise about it. If wewanted tomodel any specific interactive proof,

we could simply let it carry the type of messages that that proof needs to communicate.

For instance, in the previous protocol, we just need a single-use channel which carries

a message of type {0, 1}. However, to reason about the existence or non-existence of

interactive proofs, we would need a way to model more general channels which can carry

any data; we do not currently have a way to do so
20
.

3.3 Security

We set aside all these proliferating functors and return to a familiar setting. Consider a

string C 𝐹−→ D 𝐺−→ E of symmetric monoidal functors, which as in the previous section we

interpret as including a class of free or local processes into a broader class of processes.

We are interested in the category st(𝐺𝐹); we want to know when a morphism in this

category is secure. All of the constructions in the previous section fit this paradigm.

The main issue with defining security in the categorical setting is modelling adversar-

ial behavior. Recall from Section 1.3.4 that Universal Composability avoids dealing with

this issue by having the behavior of corrupted parties baked into protocols via backdoor

tapes. As this issue relies on a fairly low-level understanding of the machine model, it is

hard to adapt to the categorical setting. Furthermore, cryptographic approaches to com-

putation in some sense fundamentally rely on the computations respecting some kind of

type system—this is how we interpret the objects in the category.

20
Since all our computations are binary-encoded, one option is to let this be a channel over the object

{0, 1}∗, but this requires forgetting type information that may be useful. With more categorical machinery,

we could instead make this a polymorphic channel. Again, we would need to adapt the standard categorical
semantics of the polymorphic lambda calculus [See87a] to the comb framework. As the type theories in-

volved get increasingly sophisticated, so too do the categorical requirements: we would need to give a kind

of indexed cartesian closed category called a hyperdoctrine satisfying a fairly intricate equational theory.

82 Chapter 3. Categorical Cryptography

For expository purposes, in this section we will quite closely follow the technical ap-

proach of [BK22]. However, the machinery they develop can be made significantly more

general. We will see an example of this in Section 3.3.4

3.3.1 Attack Models
The primary tool of [BK22] is the notion of attack model, which constrains the possible

behavior of the adversary. The definition is chosen specifically so that we can prove a

composition theorem.

Definition 3.18. An attack model A on a symmetric monoidal category C consists of, for

each morphism 𝑓 in C, a collection of morphisms A𝑓 such that:

1. 𝑓 ∈ A𝑓 ;

2. if 𝑓 ′ ∈ A𝑓 and 𝑔′ ∈ A𝑔 so that 𝑓 and 𝑔 compose and 𝑓 ′ and 𝑔′ compose, then

𝑔′𝑓 ′ ∈ A(𝑔𝑓);

3. if 𝑓 ′ ∈ A𝑓 and 𝑔′ ∈ A𝑔, then 𝑓 ′ ⊗ 𝑔′ ∈ A(𝑓 ⊗ 𝑔);

4. if ℎ ∈ A(𝑔𝑓), then there is some 𝑔′ ∈ A𝑔 and 𝑓 ′ ∈ A𝑓 such that ℎ = 𝑔′𝑓 ′;

5. if ℎ ∈ A(𝑓 ⊗ 𝑔) such that domℎ = 𝑥 ⊗ 𝑦 for some objects 𝑥 and 𝑦, then there is

some ℎ′ ∈ A1cod 𝑓 ⊗cod𝑔, 𝑓 ′ ∈ A𝑓 , and 𝑔′ ∈ A𝑔 such that dom 𝑓 ′ = 𝑥 , dom𝑔′ = 𝑦, and
ℎ = ℎ′ ◦ (𝑓 ′ ⊗ 𝑔′).

Remark 3.19. The requirement of Item 5 that domℎ is a product 𝑥 ⊗ 𝑦, with dom 𝑓 ′ = 𝑥
and dom𝑔′ = 𝑦, is new to us. We believe this is necessary for two reasons. First, if domℎ is

not required to be a product, then it may be impossible to find such a factorization, as the

product of two morphisms always has a product as its domain. Second, the requirement

on the domains of 𝑓 ′ and 𝑔′ is necessary for the proof of Lemma 3.29. In particular, this

guarantees in that proof that the attacks 𝑎 𝑓 and 𝑎𝑔 have the same domains as 𝑓 and 𝑔,

hence allowing us to use the security condition for 𝑓 and 𝑔.

The definition is motivated as follows. The collection A𝑓 represents all the possible

actions that the adversary could force to occur, if the protocol specifies that the morphism

𝑓 is supposed to occur. The first condition says that any adversary is allowed to act as

an honest party. The second and third say that, if the adversary has a pair of attacks on

two separate computations, then they can compose those attacks to get an attack on the

composite computation. These all seem very natural in any threat model.

The fourth axiom says that any attack on a sequential composite protocol 𝑔𝑓 factors

into attacks on each of its subprotocols. This point is somewhat subtler; it seems at first

that this should rule out attacks where the adversary against the first protocol forwards

its view to the adversary against the second, hence allowing the adversary against the

second to do something it cannot do on its own. Such attacks are extremely common, and

so certainly need to be included. However, the point of the definition is that themorphisms

inA𝑓 do not have to have the same domain as 𝑓 . As such, the composite attack can model

3.3. Security 83

the forwarded view by representing the adversary on the second protocol with an attack

whose codomain includes that extra input.

The fifth axiom says something similar, but about attacks on parallel processes. The

complication here is that the two separate attacks may need some way to combine their

data at the end; this is represented by an extra attack on the identity, which is semantically

identified with the do-nothing computation; such attacks thus generally consist of adver-

saries manipulating their own state. We will say more about this axiom in the conclusion;

we are skeptical that it is sufficient to model attacks which play the protocols off of each

other during their execution. However, we expect that the fix discussed in Remark 3.19

does not introduce any additional issues here, as the framework generally expects that

attacks start from the same data as the protocols; the fix just requires that the separate

adversaries share no joint state at the start of the protocol, but if it is possible for them to

communicate during the protocol, then they can easily fix this.

Example 3.20. On any symmetric monoidal C, the honest21 attack model is given by

A𝑓 = {𝑓 }, while the maximal attack model is given by A𝑓 = ⊔𝑥,𝑦∈CC(𝑥,𝑦), i.e. in the

maximal attack model any morphism is an attack on any morphism. In particular, attacks

in the maximal attack model factor via identities: if ℎ ∈ A(𝑓 ⊗ 𝑔) with domℎ = 𝑥 ⊗ 𝑦,
then ℎ = ℎ ◦ (1𝑥 ⊗ 1𝑦).

Definition 3.21. Let C1, . . . , C𝑁 be symmetric monoidal categories with attack models

A1, . . . ,A𝑁 . Then the product attack model
∏𝑁
𝑖=1A𝑖 on

∏𝑁
𝑖=1 C𝑖 is given by

(
𝑁∏
𝑖=1

A𝑖) (𝑓1, . . . , 𝑓𝑁) =
𝑁∏
𝑖=1

A𝑖 𝑓𝑖 .

We can use these ideas to model malicious behavior in 𝑁 -party computation. For in-

stance, by placing themaximal attackmodel on some subset of the categories and the hon-

est attack model on the others, the product attack model represents some parties acting

independently, but maliciously, while the others act honestly. If we want the adversaries

to be able to communicate, then we can consider the functor

C𝑁
1
𝑁−𝑘
C ×⊗𝑘−2
−−−−−−−−→ C𝑁−𝑘 × C ⊗𝑁−𝑘−−−−→ C,

and place the maximal attack model on the final copy of C in the middle step. This means

that the 𝑘 parties on the right can behave arbitrarily, including coordinating securely

amongst themselves, while the other parties behave honestly.

It is also possible to extend attack models to the various constructions of Section 3.2.

In [BK22], they place an attack model on n-comb(C𝑁) representing a single malicious

party; we give a slight generalization which allows extending arbitrary attack models to

this setting. Recall that a comb [(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)] → (𝑋 ′, 𝑌 ′) in n-comb(C) is for-
mally a permutation 𝜎 and a list [𝜉1, . . . , 𝜉𝑛+1] of morphisms in C with appropriate types.

Any attack model defined on such combs extends to an attack model on all morphisms,

since morphisms are just lists of combs.

21
Called minimal in [BK22].

84 Chapter 3. Categorical Cryptography

Definition 3.22. Let C be a symmetric monoidal category and A an attack model. Then

there is an induced attack model on n-comb(C) defined as follows: an attack on the comb

(𝜎, [𝜉1, . . . , 𝜉𝑛+1]) is a pair (𝜎, [𝑎1, . . . , 𝑎𝑛+1]) such that 𝑎𝑖 ∈ A𝜉𝑖 for all 𝑖; note that the

permutations 𝜎 must agree.

Proposition 3.23. Definition 3.22 defines an attack model on n-comb(C).

Proof. Each morphism is an attack on itself by the same property for A. Since the attack
model onmonoidal products is defined as the concatenation of attacks on the components,

the attack model is compatible with and factors with respect to the monoidal product.

Recall that the (sequential) composition of combs is defined by nesting. Because the

attacks are defined locally, fixing the permutation and specifying attack morphisms for

each piece of the comb, we can consider each piece of the comb on its own. When not

working “at the ends” of one of the inner combs, there is no local composition happening,

so the result follows immediately. The difficultly is at this boundary, where the situation

looks like

𝑧′

.

𝑧

𝜉

𝑔

𝑓

Given attacks on 𝑓 , 𝜉 , and𝑔, we see directly by the compatibility properties ofA that these

yield an attack on this composite. Given an attack on this composite, i.e. a morphism

𝑎 ∈ A((𝑔 ⊗ 1𝑧′)𝜉 (𝑓 ⊗ 1𝑧)),

factor 𝑎 into attacks as guaranteed by the definition of A. Combining these factorizations

yields the desired factorization of the global attack. □

3.3.2 The Security Definition

Recall that objects in st(𝐺𝐹) are pairs (𝑥, 𝑠), where 𝑠 ∈ E(𝐼 ,𝐺𝐹𝑥), while morphisms 𝑓 :

(𝑥, 𝑠) → (𝑦, 𝑡) are maps 𝑓 : 𝑥 → 𝑦 in C such that (𝐺𝐹 𝑓)𝑠 = 𝑡 .

Definition 3.24. Let C 𝐹−→ D 𝐺−→ E be a string of symmetric monoidal functors so that

𝐹 is strong monoidal. Let 𝑓 : (𝑥, 𝑠) → (𝑦, 𝑡) be a map in st(𝐺𝐹) and let 𝑎 be a map in D
with dom𝑎 = 𝐹𝑥 . Then 𝑓 is secure against the attack 𝑎 if there is an attack 𝑎′ ∈ A(1𝐹𝑦)
such that dom𝑎′ = 𝐹𝑦, cod𝑎 = cod𝑎′, and the following diagram commutes in E:

𝐼 𝐺𝐹𝑥

𝐺𝐹𝑦 𝐺 cod𝑎.

𝑠

𝑡 𝐺𝑎

𝐺𝑎′

3.3. Security 85

Definition 3.25. Let C 𝐹−→ D 𝐺−→ E be a string of symmetric monoidal functors so that 𝐹

is strong monoidal. Let A be an attack model onD. A map 𝑓 : (𝑥, 𝑠) → (𝑦, 𝑡) in st(𝐺𝐹) is
A-secure if it is secure against all attacks in A𝐹 𝑓 with domain 𝐹𝑥 .

The idea is that, for every attack 𝑎 on the real protocol, there should be an attack 𝑎′ on
the ideal protocol which produces the same final state. The restriction on the domains says

that the adversaries must start from the same state as in the actual protocol. This notion

is fundamentally not black-box: the ideal adversary 𝑎′ is introduced after, and so may

depend on, the real adversary 𝑎. Moreover, because of the untyped nature of adversaries

in this paradigm, it seems quite difficult to encode black-box simulation within the model.

The definition immediately seems somewhat relaxed in comparison to thewell-known

approach of UC: the ideal adversary is required to produce the same state only at the end

of the protocol, rather than constantly simulating the real adversary to the environment

throughout the protocol execution. As we will see, this is already enough to prove a

composition theorem; however, it is unclear to the author whether this is enough to entail

all the security properties we want in the most general settings.

We now aim to prove the following composition theorem
22
.

Theorem 3.26. Let C 𝐹−→ D 𝐺−→ E be a string of symmetric monoidal functors so that 𝐹 is
strong monoidal. Let A be an attack model on D. Then the class of A-secure maps forms a
wide symmetric monoidal subcategory of st(𝐺𝐹).

As parallel composition theorems go, this is a fairly weak result. In particular, it does

not give us any security guarantee when composing with any processes which are not

secure, and it requires that we can construct our composition operation as a monoidal

product: it is not clear that this can capture the same generality as the universal compo-

sition operation. We will have more to say about this in Section 3.4.2.

To demonstrate the claim, we need to show that this class is closed under composition

and monoidal product, that it contains all the identities, and that it contains the coherence

isomorphisms. We will show the latter two claims first, since they will be used for the

others. It suffices to show the following more general lemma.

Lemma 3.27. All isomorphisms in st(𝐺𝐹) are A-secure.

Proof. Let 𝑓 : (𝑥, 𝑠) → (𝑦, 𝑡) be an isomorphism, and recall from Proposition 3.11 that

the underlying map 𝑓 in C is also an isomorphism. Let 𝑎 ∈ A(𝐹 𝑓) be an attack such that

dom𝑎 = 𝐹𝑥 . Then since 𝐹 𝑓 −1 ∈ A𝐹 𝑓 −1, by compatibility with composition we have

𝑎𝐹 𝑓 −1 ∈ A𝐹 (𝑓 𝑓 −1) = A1𝐹𝑦 .

22
Note that [BK22] prove this theorem under the assumption that D = E and G = 1D , but allow more

flexibility in the definition of the category of states, such that the theorems are equivalent. We choose

the presentation here because it generalizes more directly, and reflects all of the examples studied so far.

The proof given here is substantively identical to theirs, except that our security condition is based on

commutativity in E rather than Set.

To see the equivalence between the theorems, to go from theirs to ours take E = Set and𝐺 = 𝑅 (and use

the fact that ∗ represents 1Set), while to go from ours to theirs take 𝑅 = hom(𝐼 ,−)𝐺 .

86 Chapter 3. Categorical Cryptography

Now since (𝐺𝐹 𝑓)𝑠 = 𝑡 by definition of the category of states,

𝐼

𝐺𝐹𝑥 𝐺𝐹𝑦

𝑠 𝑡

𝐺𝐹 𝑓 −1

commutes in E. Pasting 𝐺𝑎 onto the bottom-left of this diagram yields the commutative

diagram

𝐼 𝐺𝐹𝑥

𝐺𝐹𝑦 𝐺𝐹𝑥 𝐺 cod𝑎,

𝑠

𝑡 𝐺𝑎

𝐺𝐹 𝑓 −1 𝐺𝑎

which is the desired result. □

Next, we show that the class of secure maps is closed under composition.

Lemma 3.28. Let 𝑓 : (𝑥, 𝑠) → (𝑦, 𝑡) and 𝑔 : (𝑦, 𝑡) → (𝑧,𝑢) be A-secure maps. Then 𝑔𝑓 is
A-secure.

Proof. Let 𝑎 ∈ A𝐹 (𝑔𝑓) be an attack such that dom𝑎 = 𝐹𝑥 . Let 𝑎 𝑓 ∈ A𝐹 𝑓 and 𝑎𝑔 ∈ A𝐹𝑔 be
attacks such that 𝑎𝑔𝑎 𝑓 = 𝑎, as is guaranteed by Item 4 in the definition of an attack model.

Since 𝑓 is A-secure, there is an attack 𝑎′
𝑓
∈ A1𝐹𝑦 with dom𝑎′

𝑓
= 𝐹𝑦 and cod𝑎′

𝑓
= cod𝑎 𝑓

such that the following diagram commutes in E:

𝐼 𝐺𝐹𝑥

𝐺𝐹𝑦 𝐺 cod𝑎 𝑓 .

𝑠

𝑡 𝐺𝑎𝑓

𝐺𝑎′
𝑓

Now since 𝑎′
𝑓
∈ A1𝐹𝑦 and 𝑎𝑔 ∈ A𝐹𝑔, since attacks are compatible with composition we

have that 𝑎𝑔𝑎
′
𝑓
∈ A𝐹𝑔, so since 𝑔 is A-secure, there is 𝑎′𝑔 ∈ A1𝐹𝑧 such that the following

diagram commutes:

𝐼 𝐺𝐹𝑦

𝐺 cod𝑎 𝑓

𝐺𝐹𝑧 𝐺 cod𝑎𝑔.

𝑡

𝑢

𝐺𝑎′
𝑓

𝐺𝑎𝑔

𝐺𝑎′𝑔

By pasting the previous two diagrams along the edge 𝐼
𝑡−→ 𝐺𝐹𝑦

𝐺𝑎′
𝑓−−−→ 𝐺 cod𝑎 𝑓 , we finally

3.3. Security 87

see that

𝐼 𝐺𝐹𝑥

𝐺 cod𝑎 𝑓

𝐺𝐹𝑧 𝐺 cod𝑎𝑔

𝑠

𝑢

𝐺𝑎𝑓

𝐺𝑎𝑔

𝐺𝑎′𝑔

commutes; this is the desired result. □

The pattern of this argument has cryptographic meaning. The attack 𝑎′
𝑓
on 1𝐹𝑦 is the

ideal adversary for the attack against the real protocol 𝑓 . The composite adversary 𝑎𝑔𝑎
′
𝑓

is first the ideal adversary for 𝑓 and then the real adversary for 𝑔. By this point in the

proof, the point is that the attack on 𝑔 can do no better than using the output state of the

attack on 𝑓 , hence can be simulated by a simulator 𝑎′𝑔 against this composite.

Finally, we prove that the class of secure maps is closed under monoidal product.

Lemma 3.29. Let 𝑓 : (𝑥, 𝑠) → (𝑦, 𝑡) and 𝑔 : (𝑧,𝑢) → (𝑤, 𝑣) be A-secure maps. Then 𝑓 ⊗ 𝑔
is A-secure.

Proof. Let𝜓𝑥,𝑦 : 𝐹𝑥 ⊗D 𝐹𝑦 → 𝐹 (𝑥 ⊗C𝑦) and 𝜙𝑥,𝑦 : 𝐺𝑥 ⊗E𝐺𝑦 → 𝐺 (𝑥 ⊗D𝑦) be the structure
maps of 𝐹 and 𝐺 , respectively, so that𝜓 is an isomorphism since 𝐹 is strong monoidal.

We first prove the claim when C = D and 𝐹 = 1D . Let 𝑎 ∈ A(𝑓 ⊗ 𝑔) be an attack

such that dom𝑎 = 𝑥 ⊗ 𝑧. Let 𝑎 𝑓 ∈ A𝑓 , 𝑎𝑔 ∈ A𝑔, and 𝑎1 ∈ A1𝑦⊗𝑤 be attacks such that

𝑎 = 𝑎1(𝑎 𝑓 ⊗𝑎𝑔), with dom𝑎 𝑓 = 𝑥 and dom𝑎𝑔 = 𝑧, as guaranteed by Item 5 in the definition

of an attack model. Since 𝑓 and 𝑔 are A-secure, there are attacks 𝑎′
𝑓
∈ A1𝑦 and 𝑎′𝑔 ∈ A1𝑤

such that

𝐼 𝐺𝑥

𝐺𝑦 𝐺 cod𝑎 𝑓

𝑠

𝑡 𝐺𝑎𝑓

𝐺𝑎′
𝑓

and

𝐼 𝐺𝑧

𝐺𝑤 𝐺 cod𝑎𝑔

𝑢

𝑣 𝐺𝑎𝑔

𝐺𝑎′𝑔

commute. Let 𝑜 = cod𝑎 𝑓 and 𝑝 = cod𝑎𝑔. Letting 𝜙 be the structure map which witnesses

monoidality of 𝐺 , we claim that

𝐼

𝐼 ⊗ 𝐼 𝐺𝑥 ⊗E 𝐺𝑧 𝐺 (𝑥 ⊗D 𝑧)

𝐺𝑦 ⊗E 𝐺𝑤 𝐺𝑜 ⊗E 𝐺𝑝 𝐺 (𝑜 ⊗D 𝑝) 𝐺 cod𝑎

𝐺 (𝑦 ⊗D 𝑤)

𝜆−1
𝐼

𝑠⊗E𝑢

𝑡⊗E𝑣 𝐺𝑎𝑓 ⊗E𝐺𝑎𝑔

𝜙𝑥,𝑧

𝐺 (𝑎𝑓 ⊗D𝑎𝑔) 𝐺𝑎

𝐺𝑎′
𝑓
⊗E𝐺𝑎′𝑔

𝜙𝑦,𝑤

𝜙𝑜,𝑝 𝐺𝑎1

𝐺 (𝑎′
𝑓
⊗D𝑎′𝑔)

88 Chapter 3. Categorical Cryptography

commutes. Indeed, the top-left square is the product of the two previous diagrams, the

middle square is naturality of 𝜙 , the right triangle is the definition of 𝑎 𝑓 , 𝑎𝑔, and 𝑎1, and

the bottom square is naturality of 𝜙 again.

Now notice that the top path along this diagram is exactly the definition of the product

𝑠 ⊗ 𝑢 in st(𝐺), while the left path is the definition of 𝑡 ⊗ 𝑣 . As such, the top-right path
is the top-right path of the square we need to commute to show security of 𝑓 ⊗ 𝑔. It just
suffices to show that 𝑎1 ◦ (𝑎′𝑓 ⊗D 𝑎

′
𝑔) is an attack on the ideal model to complete the proof,

but this follows because of the composition properties of attack models.

Now we prove the claim for arbitrary 𝐹 . Notice that a map 𝑓 : (𝑥, 𝑠) → (𝑦, 𝑡) is
secure in st(𝐺𝐹) if and only if 𝐹 𝑓 : (𝐹𝑥, 𝑠) → (𝐹𝑦, 𝑡) is secure in st(𝐺): the commutative

squares witnessing security are exactly the same. Since 𝑓 and 𝑔 are secure, now 𝐹 𝑓 and

𝐹𝑔 are secure, so by the previous special case 𝐹 𝑓 ⊗D 𝐹𝑔 is secure. Furthermore, 𝜓 is an

isomorphism, so secure. Finally, since

𝐹 (𝑓 ⊗C 𝑔) = 𝜓𝑦,𝑤 (𝐹 𝑓 ⊗D 𝐹𝑔)𝜓−1𝑥,𝑧

is the composite of secure maps, it is secure, and so 𝑓 ⊗C 𝑔 is secure. □

Putting it all together:

Proof of Theorem 3.26. We have shown that the class of secure maps is closed under com-

position and monoidal product, and contains all the identities and coherence isomor-

phisms. This is the desired result. □

In universal composability, there is a theorem which says that a protocol is UC-secure

if and only if it is UC-secure against the “trivial adversary”
23
, which just forwards all its

messages to the environment [Can20, Claim 11]. There is a similar notion in the categor-

ical model, which [BK22] call an initial class of attacks.

Definition 3.30. Let C be a symmetric monoidal category with attack model A. Let

𝑓 : 𝑥 → 𝑦 be a morphism in C. A sub-collection 𝑋 of A𝑓 is initial if for any 𝑎 ∈ A𝑓 with
dom𝑎 = 𝑥 , there exists some 𝑎𝑋 ∈ 𝑋 and 𝑎1 ∈ A1𝑦 such that 𝑎 = 𝑎1𝑎𝑋 .

Example 3.31. When A is the maximal attack model, any map 𝑓 : 𝑥 → 𝑦 has an initial

attack given by just 1𝑥 . This corresponds to the trivial adversary in UC.

Theorem 3.32. Let C 𝐹−→ D 𝐺−→ E be a string of monoidal functors so that 𝐹 is strong
monoidal. Let 𝑓 : (𝑥, 𝑠) → (𝑦, 𝑡) be a morphism in st(𝐺𝐹). Let A be an attack model on
D and let 𝑋 be an initial sub-collection of A𝑓 . Then 𝑓 is A-secure if and only if it is secure
against all attacks in 𝑋 .

Proof. The forwards direction is immediate because𝑋 ⊆ A𝑓 . For the backwards direction,
let𝑎 ∈ A𝐹 𝑓 be an attack such that dom𝑎 = 𝐹𝑥 . By the definition of an initial subcollection,

23
Called the “dummy adversary” in the literature.

3.3. Security 89

let 𝑎 = 𝑎1𝑎𝑋 with 𝑎𝑋 ∈ 𝑋 and 𝑎1 ∈ A1𝐹𝑦 . Since 𝑓 is secure against 𝑎𝑋 , there is an 𝑎′𝑋 ∈ A1𝐹𝑦
witnessing the security condition. Now 𝑎1𝑎

′
𝑋
∈ A1𝐹𝑦 , and further

𝐼 𝐺𝐹𝑥

𝐺𝐹𝑦 𝐺 cod𝑎𝑋 𝐺 cod𝑎

𝑠

𝑡 𝐺𝑎𝑋
𝐺𝑎

𝐺𝑎′
𝑋

𝐺𝑎1

commutes: the square by the security condition for 𝑎𝑋 , and the triangle by definition of

𝑎𝑋 and 𝑎1. This is the desired result. □

Finally, the following lemma is a helpful computational tool.

Proposition 3.33. Let C1, . . . , C𝑁 be symmetric monoidal categories with attack models
A1, . . . ,A𝑁 . Let 𝑓1, . . . , 𝑓𝑁 be morphisms in the respective categories and let 𝑋1, . . . , 𝑋𝑁 be
initial subcollections of A𝑖 𝑓 . Then

∏𝑁
𝑖=1𝑋𝑖 is an initial subcollection of

∏𝑁
𝑖=1A𝑖 𝑓𝑖 .

Proof. Given an attack (𝑎1, . . . , 𝑎𝑁) ∈
∏𝑁
𝑖=1A𝑖 𝑓𝑖 with dom𝑎𝑖 = dom 𝑓𝑖 , factor it compo-

nentwise, and assemble the resulting attacks into an attack in

∏𝑁
𝑖=1𝑋𝑖 . □

3.3.3 The One-Time Pad
Still following [BK22], we now show security of the one-time pad. We equip C3 with

the product attack model, where 𝐴 and 𝐵 have the honest attack model, and 𝐸 has the

maximal attack model. This induces an attack model on n-comb(C3) by Definition 3.22.

First, note that the eavesdropper has an initial attack given by computing the identity.

To prove security, we need to give an attack on the ideal protocol

𝐴
.

𝐵

Such an attack can have 𝐸 compute any map on their own, without any interaction with

𝐴 and 𝐵, while 𝐴 and 𝐵 must compute exactly this resource. We will choose the map

𝐴
.

𝐵

$

𝐸

Now we just compute:

𝐴

𝐴

$

𝐵
𝐵

𝐸

𝐵

𝐵

(3.6)

=

𝐴

$

𝐸

𝐵

90 Chapter 3. Categorical Cryptography

(3.2)

=

𝐴

$

𝐸

𝐵

(2.2)

=

𝐴

$

𝐸 𝐵

(3.5)

=

𝐴

$

𝐸 𝐵

(3.4)

=

$

𝐴

𝐸 𝐵

(2.4)

=

𝐴

$

𝐸

𝐵

3.3. Security 91

(2.3)

=

𝐵

𝐴

$

𝐸

(3.7)

=

$

𝐵

𝐴

𝐸

(3.4)

=

𝐴
.

𝐵

$

𝐸

This is the entire proof!

3.3.4 A 2-Categorical Generalization

In many situations in cryptography, we want to consider not equality of protocols, but

rather some weaker notion of indistinguishability or even an asymmetric reducibility re-

lation. There is a natural categorical model of such settings, in the form of 2-categories,
in which there are not only morphisms between objects, but also 2-morphisms between

morphisms, which we think of as encoding reductions. We now present an original gen-

eralization of the above theory to this setting.

Definition 3.34. A (strict) 2-category C consists of:

• A collection of 0-cells;
• For each pair of 0-cells 𝑥,𝑦, a category C(𝑥,𝑦), whose objects are called 1-cells and
whose morphisms are called 2-cells;

• For each triple of 0-cells 𝑥,𝑦, 𝑧, a functor ◦𝑥,𝑦,𝑧 : C(𝑦, 𝑧) × C(𝑥,𝑦) → C(𝑥, 𝑧);
• For each 0-cell 𝑥 , an identity 1-cell 1𝑥 ∈ C(𝑥, 𝑥).

The functor ◦ must be unital and associative; see for instance [Kel81].

Let us “unroll” what this definition says. We have 1-cells between 0-cells, and 2-cells

between 1-cells. There is one way to compose 1-cells, via the functor ◦, but two ways

to compose 2-cells: within their own hom-category, via its internal composition, or with

those from other hom-categories, via ◦. The situation is identical to the vertical and hori-

zontal composition of natural transformations, and thus this is the fundamental example:

92 Chapter 3. Categorical Cryptography

Example 3.35. The category of categories Cat is a 2-category, where the 0-cells are

categories, the 1-cells are functors, and the 2-cells are natural transformations.

Example 3.36. There are many more examples of 2-categories.

• Any ordinary category is a 2-category with no non-identity 2-cells.

• Suppose that C is a category endowed with equivalence relations ∼ on each of its

hom-sets, such as PPT with computational indistinguishability of outputs, such that

if 𝑓 ∼ 𝑔 and ℎ ∼ 𝑘 , and the composites exist, then ℎ𝑓 ∼ 𝑘𝑔. Then C forms a 2-

category with a unique 2-cell between morphisms if and only if they ∼-relate. The
horizontal composition is by the compatibility law and the vertical composition is

by transitivity.

• Let 𝐿 be a functional programming language endowed with rewrite rules, such as

𝛼𝛽𝜂 reductions in the lambda calculus, which are strongly normalizing
24
. Then

the associated category L is a 2-category with reductions as 2-cells [See87b]. Such

2-categories have been previously used for operational semantics [BW19].

The value of the generalization is in the last two examples: if our computations are en-

riched with a notion of reduction, such as the existence of a simulator which may produce

the output of one morphism given the output of another, then a 2-categorical approach

takes advantage of that extra structure.

We have phrased the preceding sections in such a way as to make the generalization

as painless as possible. We let E be a monoidal 2-category (meaning one endowed with a

2-functor ⊗ satisfying certain axioms), and modify Definition 3.24 to ask for the existence

of a 2-cell
25

𝐼 𝐺𝐹𝑥

𝐺𝐹𝑦 𝐺 cod𝑎.

𝑠

𝑡 𝐺𝑎

𝐺𝑎′

In all the proofs, we paste such squares in the same orientation, so they go through as is.

The only issue is in the proof of Lemma 3.29, where we need that the tensor of two 2-cells

still yields a 2-cell, but this is exactly what we mean by 2-functorality of ⊗.
Notice that, in this treatment, we only give E a 2-categorical structure. It is possible

to ask that the other categories and functors are their 2-categorical equivalents, but this

turns out to be a lot of extra work for little-to-no extra expressive power, because we only

end up using the 2-cell structure on E. A further generalization is possible to bicategories,
in which case this extra structure ends up being necessary to make the proofs work, but

we have preferred the strict approach here for its easy relation to the 1-categorical case.

24
Logicians know this assumption as cut elimination.

25
It may seem that the 2-cell should go the other direction, but we choose this direction as representing

the ability to convert the output of the ideal adversary into the output of the real adversary. The definitions

have equivalent expressive power by taking the dual of all the hom-categories.

3.4. Conclusion 93

3.4 Conclusion

3.4.1 Paths Not Taken

We spent significant time over the year in directions which did not ultimately pan out.

We discuss some major avenues here.

Categorical Semantics of Cryptographic Logics

As mentioned in Section 1.3.5, there are several frameworks which attempt to give type

theories or probabilistic logics for reasoning about cryptographic protocols. The deep,

well-established connection between types and categories suggests that there may be

value in giving a categorical semantics to some of these frameworks; this is thus a logical

place to search for categorical approaches to cryptography. Because this is an extremely

active line of research, it is infeasible to consider all of these frameworks, but they are

generally all based on some kind of asynchronous message-passing calculus, so the first

issue is giving categorical semantics to any such calculus. Unfortunately, while there has

been some progress, this is well-known to be a difficult problem [LM00; SM15; ST21].

The issue is that these calculi are asynchronous so that message delivery is not fixed; this

causes associativity and unitality to fail.

The solutions either introduce significant complexity to the 𝜋-calculus or already use

higher categorical machinery for the semantics, so while it seems possible that these

strategies could be used for the sophisticated logics of [Mor+21] or [LHM19], the resulting

semantics would likely be so complex as to be of no advantage in comparison to UC. The

author would love to be proven wrong about this, and regardless such a semantics would

likely be of independent interest.

One possible approach for futurework is to use combs to handle issues aroundmessage-

passing, and then use the cryptographic logics as syntaxes fromwhich to build higher cat-

egories of combs. Working with specific ground categories dodges the general issues with

these semantics by building the interaction into the morphisms, rather than as part of the

categorical structure. This is the approach we took in defining the category n-comb
∗
.

Functorality of Attack Models

The definition of an attack model in Section 3.3.1 at first seems somewhat unnatural from

a categorical perspective. However, as [BK22] point out, on closer examination it looks

somewhat like a functor. We consider two possible approaches to defining attack models

functorially.

First, attack models can be thought of as relations on categories: an attack model

on C is a wide symmetric monoidal subcategory A of C2 which contains the diagonal

subcategory. The idea is that a pair (𝑓 , 𝑔) is in A if 𝑔 is an attack on 𝑓 . That this is a

category gives the closure properties of attack models. However, it is somewhat unnatural

to ask for the factorization property. The sequential factorization property says that, if

(𝑔𝑓 , ℎ) in in A, then ℎ = 𝑔′𝑓 ′ such that (𝑔,𝑔′) and (𝑓 , 𝑓 ′) are in A. One interesting thing

about this definition is that we can define a category of attacks on amap 𝑓 : it is the bottom

94 Chapter 3. Categorical Cryptography

row of the diagram

2 C

A𝑓 A C,

𝑓

⌝
𝜋1

𝜋2

where 2 is the category • → •. This all works, but it does not seem to be an improvement

on the naturality of the current definition.’

A second approach is to think of attack models as a kind of fibration. The idea is that

an attack model is a functor 𝐹 : A→ C such that the fiber of a morphism 𝑓 is exactly the

attacks on 𝑓 . Again, the closure properties are expressed by functorality, but in this case

even the sequential factorization property is similar to notions that have been studied:

we will not go into details, but it expresses that the functor 𝐹 is a kind of weak Conduché
fibration with no uniqueness properties. However, the issue with this approach is that

any attack is only an attack on one morphism, and further that the type information of A
seems somewhat meaningless to our notions of adversary.

In general, the problem with modelling adversarial behavior is that adversaries get

to break the type system. This reduces the value of much of the work of the categorical

semantics of programming languages, which is based on the objects-as-types correspon-

dence. We think there may be a natural categorical expression of this notion, but we have

not found it.

Internalizing Indistinguishability

Another line of our work was an attempt to internalize the notion of computational in-

distinguishability into suitable categories, for instance Markov categories. The issue is

that it is hard to model approximate and asymptotic equivalence relations without higher

categorical machinery. We think the 2-categorical generalization we present is a better

strategy than trying to give such an internalization, because it is not clear what cate-

gorical structure is needed to discuss asymptotics. Further work on this question could

potentially start from categorical notions of complexity theory [BI20].

3.4.2 Evaluation

We conclude this chapter by returning once more to the questions from Section 1.3.1.

In Question 1, we asked which kinds of protocols can be composed. A major ad-

vantage of this kind of axiomatic algebraic approach is that it can model a very general

class of computations; we have, for instance, discussed how probabilistic, quantum, and

other effectful forms of computation can all be represented as symmetric monoidal cate-

gories. The literature on resource theories and on categorical representations of quantum

protocols is in particular quite extensive. However, while we suspect that virtually any

individual protocol can be represented via a suitable categorical construction, there are

open questions about whether the system as a whole can be cohesively reasoned about;

for instance, we saw in Section 3.2.6 that it is difficult to represent polymorphic chan-

nels using the current tools in the literature. Representing this kind of more complicated

3.4. Conclusion 95

resources likely requires increasingly sophisticated categorical constructions, removing

some of the comparative complexity advantages of the framework.

In Question 2, we asked how we compose protocols. The composition operation must

satisfy the axioms of a symmetric monoidal category, which have been widely used for

modelling computational composition. In Question 3, we asked about the scope of this

composition definition; here we see some potential limitations. It is not clear that the

flexibility of the universal composition operation from UC can be matched by monoidal

composition. Issues like asynchronous network conditions, adversarial schedulers, and

dynamic subroutine calling are all covered by UC, but are typically handled by more so-

phisticated categorical machinery out of the scope of the composition theorem.

In Question 4, we asked what notion of security the composition theorem preserves.

A major advantage of the categorical machinery is that protocols “come with” types, so

that we know the ideal functionality for a protocol immediately by construction: it is the

identity on the codomain. The security definition says that the ideal adversary can be

used to simulate the real adversary, represented by the presence of a certain 2-cell. These

2-cells potentially allow modelling situations like the environment from UC, where two

protocols are required to be indistinguishable throughout their execution; we leave this

for future work.

In Question 5, we asked about the model of adversarial behavior. The categorical

framework is based around the notion of an attackmodel, which seems to be fairly general.

However, the author is uncertain about the correctness of Item 5 of the definition. In

particular, it may be that the two attacks need to communicate with each other during
the run of the protocol, rather than combining their states together at the end. This is

not a priori impossible with this definition, but it seems to require a more sophisticated

monoidal structure along the lines of the product of 1-combs in (3.1), rather than the

concatenations we have constructed here.

In Question 6, we asked which protocols the composition theorem lets us compose

with. Crucially, the composition theorem requires that all protocols being composed are

secure. This is a much weaker result than that of UC, which guarantees that simulatability

properties still hold even if a secure sub-protocol is substituted for an ideal functionality

in an insecure larger protocol.

Finally, in Question 7, we asked how many times we can compose. The composition

theorem works only a constant number of times, and it is unclear how to extend it to

polynomially-many compositions; this is related to the lack of a dynamic composition

operation discussed earlier.

In the end, we think that the categorical model is more expressive computationally,

thanks to axiomatizing the properties a computational model ought to have, but less ex-

pressive cryptographically, lacking the flexibility of the universal composition operation

and the breadth of the UC general composition theorem. It is possible that this could be

resolved with more sophisticated underlying categorical structure, but this would remove

the comparative complexity advantage of the categorical model. However, the categor-

ical framework does admit elegant diagrammatic descriptions of protocols and security

proofs, which are likely very valuable for describing complex cryptographic protocols.

Appendix A

Computer Scientific Foundations

In the main body, we have assumed standard material from a course in computability and

complexity, including function asymptotics, the notion of an algorithm, and the complex-

ity class 𝑃 . We briefly overview these ideas here; a standard text is [Sip13].

A.1 Asymptotics
Function asymptotics formalize the notion of a function approximating another function.

In particular, for a pair of functions 𝑓 , 𝑔 : N → R, we often want to compare 𝑓 and 𝑔 on

large inputs and only up to a constant factor. This is most common in runtime analysis,

the idea being that the running time of algorithms on small inputs is less important to their

overall performance than their running time on large inputs. We formalize this notion as

follows:

Definition A.1 (Function Asymptotics). Let 𝑓 , 𝑔 : N → R be a pair of functions which

are both non-negative for sufficiently large inputs. We say that 𝑓 is big-Oh of 𝑔, written
𝑓 = 𝑂 (𝑔), if there exists a constant 𝑐 > 0 such that for all 𝑛 sufficiently large,

𝑓 (𝑛) ≤ 𝑐𝑔(𝑛).

In this case, we also say that 𝑔 is big-Omega of 𝑓 , written 𝑔 = Ω(𝑓).
If 𝑓 = 𝑂 (𝑔) and 𝑔 = 𝑂 (𝑓), we say that 𝑓 is big-Theta of 𝑔, written 𝑓 = Θ(𝑔). Explicitly,

this means that there exist constants 𝑐1, 𝑐2 > 0 such that for all 𝑛 sufficiently large,

𝑐1𝑓 (𝑛) ≤ 𝑔(𝑛) ≤ 𝑐2𝑓 (𝑛).

If 𝑓 = 𝑂 (𝑔) but 𝑓 ≠ Θ(𝑔), we say that 𝑓 is little-oh of 𝑔, written 𝑓 = 𝑜 (𝑔), and 𝑔 is

little-omega of 𝑓 , written 𝑔 = 𝜔 (𝑓). Explicitly, this means that for all constants 𝜖 > 0 and

all 𝑛 sufficiently large,

𝑓 (𝑛) ≤ 𝜖𝑔(𝑛).

Notation. By abuse of notation, we often write 𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) to mean that 𝑓 is𝑂 (𝑔); for
example, the statement that 𝑛2 is𝑂 (𝑛3) means that the function 𝑓 (𝑛) = 𝑛2 is𝑂 (𝑔), where
𝑔 is the function 𝑛 ↦→ 𝑛3.

98 Appendix A. Computer Scientific Foundations

Example A.2. We have that:

• 17𝑛2 is 𝑜 (𝑛3), 𝜔 (𝑛), and Θ(𝑛2);
• log𝑛 is 𝑜 (𝑛), 𝜔 (1), and Θ(ln𝑛);
• 𝑒𝑛 is 𝜔 (𝑛𝑘) for any exponent 𝑘 ;

• 𝑒−𝑛 is 𝑜 (𝑛−𝑘) for any exponent 𝑘 .

These last two examples are especially important. No matter how big the power, an

exponential will always dominate a polynomial for sufficiently big 𝑛. Because of the im-

portance of polynomials in theoretical computer science, we say a function 𝑓 is negligible
if 𝑓 = 𝑜 (𝑛𝑘) for all 𝑘 . In this case, we write 𝑓 = negl(𝑛) or just 𝑓 = negl.

Proposition A.3. Big-Oh is a preorder on the set of functions N→ N. The induced equiv-
alence relation is exactly big-Theta.

In the partial order of equivalence classes under Θ, 𝑂 behaves like ≤, 𝑜 like <, and Θ
like =. As suggested by the notation 𝑓 = 𝑂 (𝑔), it is common in some contexts to treat

functions as identical with their asymptotic equivalence class.

Proposition A.4. Let 𝑓1 = 𝑂 (𝑔1) and 𝑓2 = 𝑂 (𝑔2). Let 𝑐 be any positive constant. Then,

𝑓1 + 𝑓2 = 𝑂 (max{𝑔1, 𝑔2}), 𝑐 𝑓1 = 𝑂 (𝑔1), and 𝑓1𝑓2 = 𝑂 (𝑔1𝑔2).

In other words,

𝑂 (𝑔1) +𝑂 (𝑔2) = 𝑂 (max{𝑔1, 𝑔2}), 𝑐𝑂 (𝑔) = 𝑂 (𝑔), and 𝑂 (𝑔1)𝑂 (𝑔2) = 𝑂 (𝑔1𝑔2).

Identical results hold for 𝑜 and Θ.

Proposition A.4 justifies the universal practice of dropping constants and small addi-

tive terms from asymptotics, so that for instance 𝑛2 + 𝑛 + ln𝑛 = Θ(𝑛2).

A.2 Algorithms and Determinism
Our basic notion is of an algorithm over a finite alphabet Σ, usually Z2. An algorithm

A is intuitively some set of steps which take an input word 𝑥 over Σ, perform some

transformations, and output another word A(𝑥) over Σ. An algorithm may have certain

side effects, such as sending a message or logging a string, and its behavior may not be

deterministic. There are several ways to formalize the notion of algorithm—most common

in cryptography are Turing machines—but we will not need to be so precise here.

Algorithms may have multiple possible “branches” in their instructions. Consider the

following:

Algorithm A.5. On input 𝑥 , either output 0 or 1.

We say that algorithms of this sort are nondeterministic; in contrast, an algorithm is

deterministic if its instructions do not include such choices. In particular, we say that an

algorithmA deterministically computes a function 𝑓 if it is deterministic and, for any input

A.3. Complexity Theory 99

𝑥 ∈ Σ∗, A outputs the value 𝑓 (𝑥) ∈ Σ∗. In contrast, A nondeterministically computes 𝑓
if, for any input 𝑥 , there exists a particular choice of branches such that A outputs 𝑓 (𝑥).
Thus Algorithm A.5 nondeterministically computes both the functions 𝑥 ↦→ 0 and 𝑥 ↦→ 1.

We sometimes view nondeterministic algorithms as computing functions into the power

set of Σ∗, so that Algorithm A.5 computes the function 𝑥 ↦→ {0, 1}, and we similarly

sometimes write A(𝑥) = {0, 1}.
An important middle ground is probabilistic algorithms. Again, there are many possi-

ble models, but the basic idea is that a probabilistic algorithm has access to some source

of randomness—say, an arbitrarily long string of independent and uniform coin tosses—

which it can use to choose between branches. In this case, it is not enough for there to

be some branch which computes a specific function. Instead, we say that an algorithm

computes 𝑓 with bounded probability if for any input 𝑥 ,

Pr[A(𝑥) = 𝑓 (𝑥)] > 2

3

,

where the probability is taken over the randomness ofA1
. In this case, we often think of

A(𝑥) as a probability distribution on Σ∗.
Instead of thinking of algorithms operating directly on binary strings, we usually think

of them as operating on encodings of mathematical objects. For example:

Algorithm A.6. On input 𝑥 a natural number, output the number 2𝑥 .

We say that Algorithm A.6 deterministically computes 𝑥 ↦→ 2𝑥 , even though it tech-

nically operates on encodings of naturals. While there are many possible encodings, we

assume that a reasonable encoding is chosen, so that for instance numbers are encoded

in binary, rather than unary. Such details will not be relevant for us.

One more subtlety is important. In general, we require that the description of any

algorithmA is finite. However, we may also consider non-uniform algorithms, which are

sequences of algorithms A = (A1,A2, . . .) such that, on an input of length 𝑛, A dele-

gates to A𝑛 . Non-uniform computation is generally stronger than uniform computation,

as non-uniform algorithms may encode nonfinite information, as long as they only use

finitely much of this information for each input length and hence for each computation
2
.

A.3 Complexity Theory
Each algorithm has an associated running time, which is informally the number of steps

the algorithm takes on a given input. In particular, for an algorithm A, we say that its

running time is the function 𝑇A : N → N which takes any natural number 𝑛 to the

maximum number of stepsA takes to terminate on any input of length 𝑛. Of course, this

1
The choice of

2

3
is not particularly important here—generally any constant 𝑐 > 1

2
works.

2
For instance, non-uniform algorithms may solve the halting problem (which asks whether an input

algorithmM eventually terminates), which is uniformly undecidable. In particular, since there are only

finitely many Turing machines of a given size, a non-uniform algorithm may simply encode in A𝑛 the

answer to the halting problem for each Turing machine of length 𝑛.

100 Appendix A. Computer Scientific Foundations

notion is not yet precise, as we don’t know what a “step” is, but it is easy to make precise

in any standard model of computation.

In general, the running timemay depend on the formal model of computation inwhich

the algorithm is constructed, but the complexity-theoretic Church-Turing thesis states that
“reasonable” models of classical computation recover the same inhabitants of sufficiently

robust complexity classes, in particular of those we are about to define. This hypothesis

is a heuristic, but has been born out in practice.

Definition A.7 (polynomial-time; P, NP). An algorithm A is polynomial-time if 𝑇A =

𝑂 (𝑛𝑘) for some constant𝑘 . The class P consists of all functionswhich are deterministically

computable by polynomial-time algorithms. The class NP consists of all functions which

are nondeterministically computable by polynomial-time algorithms
3
.

The general idea is that polynomial-time algorithms are “efficient in practice.” It may

sometimes occur that the constant factors or the exponent are so large as to render the

algorithm practically useless, but in most cases functions in P are efficiently solvable for

practical applications, including cryptography. We can now state themost important open

problem in computer science:

Conjecture A.8. We have that P ≠ NP.

While a proof seems completely out of reach, this conjecture is widely believed, and

as we will see is necessary for all of modern cryptography; we will assume it here. An

introduction to the modern state of P vs. NP is [And17].

Formalizing probabilistic complexity classes is slightly more subtle. Consider the fol-

lowing case:

Algorithm A.9. On input 𝑥 , output 1 with probability 1 − 2−|𝑥 | ; otherwise count from 0

to 2
|𝑥 |

and then output 1.

While this algorithm is almost always polynomial-time, it is not polynomial-time

when it takes the second branch. The point is that for probabilistic algorithms, 𝑇A (𝑛)
is a probability distribution, not just a fixed number. For our purposes, we require that

the algorithm always runs in polynomial time. As such:

Definition A.10 (probabilistic polynomial-time; BPP). A probabilistic algorithm is prob-
abilistic polynomial-time if, for any choice of random bits, 𝑇A = 𝑂 (𝑛𝑘) for some constant

𝑘 . The class BPP consists of all functions which are computable with bounded probability

by a probabilistic polynomial-time algorithm.

For non-uniform algorithms, the situation is also slightly more complicated. In par-

ticular, it is too much to allow the machines to be arbitrarily large, as they could simply

encode lookup tables for every possible input. As such, we ask that the size of each ma-

chine is polynomially bounded.

3
In fact, we have defined here the classes FP and FNP of polynomially- and nondeterministically-

polynomially-computable function problems. Formally, P and NP are classes of decision problems, which
are just subsets 𝐿 of Σ∗—the algorithm must output 1 if its input is in 𝐿, and 0 otherwise. Function and

decision problems are extremely closely related—for instance, P = NP if and only if FP = FNP—and we will

not distinguish between them here.

A.3. Complexity Theory 101

Definition A.11 (non-uniform polynomial-time; P/poly). A non-uniform algorithmA =

(A1,A2, . . .) is polynomial-time if𝑇A = 𝑂 (𝑛𝑘) for some constant𝑘 and the size of eachA𝑛

is 𝑂 (𝑛𝑘) for some constant 𝑘 independent of 𝑛. The class P/poly consists of all functions

which are computable by non-uniform polynomial-time algorithms.

Non-uniform probabilistic algorithms are similarly defined.

Theorem A.12 (Adelman’s theorem). We have that BPP ⊆ P/poly.

Bibliography

[Abr+17] Samson Abramsky et al. “The Quantum Monad on Relational Structures”.

In: 42nd International Symposium on Mathematical Foundations of Computer
Science (MFCS 2017). Ed. by Kim G. Larsen, Hans L. Bodlaender, and Jean-

Francois Raskin. Vol. 83. Leibniz International Proceedings in Informatics

(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Infor-

matik, 2017, 35:1–35:19. isbn: 978-3-95977-046-0. doi: 10 . 4230 / LIPIcs .
MFCS . 2017 . 35. url: https : / / drops - dev . dagstuhl . de / entities /
document/10.4230/LIPIcs.MFCS.2017.35.

[AC04] S. Abramsky and B. Coecke. “A categorical semantics of quantum protocols”.

In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Sci-
ence, 2004. 2004, pp. 415–425. doi: 10.1109/LICS.2004.1319636.

[ACS22] Gilad Asharov, Ran Cohen, and Oren Shochat. Static vs. Adaptive Security
in Perfect MPC: A Separation and the Adaptive Security of BGW. Cryptology

ePrint Archive, Paper 2022/758. https://eprint.iacr.org/2022/758.
2022. url: https://eprint.iacr.org/2022/758.

[AG09] Thorsten Altenkirch and Alexander S. Green. “The Quantum IO Monad”. In:

Semantic Techniques in Quantum Computation. Ed. by Simon Gay and IanEd-

itors Mackie. Cambridge University Press, 2009, pp. 173–205.

[And17] Scott Anderson. “P

?

= NP”. 2017. url: https://www.scottaaronson.com/
papers/pnp.pdf.

[Bar+04] B. Barak et al. “Universally composable protocols with relaxed set-up assump-

tions”. In: 45th Annual IEEE Symposium on Foundations of Computer Science.
2004, pp. 186–195. doi: 10.1109/FOCS.2004.71.

[Bau00] Andrej Bauer. PhD thesis. Carnegie Mellon University, 2000.

[Ben+90] Michael Ben-Or et al. “Everything Provable is Provable in Zero-Knowledge”.

In:Advances in Cryptology—CRYPTO’ 88. Ed. by ShafiGoldwasser. NewYork,

NY: Springer New York, 1990, pp. 37–56. isbn: 978-0-387-34799-8.

[Ben95] P. N. Benton. “Amixed linear and non-linear logic: Proofs, terms andmodels”.

In: Computer Science Logic. Ed. by Leszek Pacholski and Jerzy Tiuryn. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1995, pp. 121–135. isbn: 978-3-540-

49404-1.

https://doi.org/10.4230/LIPIcs.MFCS.2017.35
https://doi.org/10.4230/LIPIcs.MFCS.2017.35
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.35
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.35
https://doi.org/10.1109/LICS.2004.1319636
https://eprint.iacr.org/2022/758
https://eprint.iacr.org/2022/758
https://www.scottaaronson.com/papers/pnp.pdf
https://www.scottaaronson.com/papers/pnp.pdf
https://doi.org/10.1109/FOCS.2004.71

104 Bibliography

[BI20] SAUGATA BASU and UMUT ISIK. “CATEGORICAL COMPLEXITY”. In: Fo-
rum of Mathematics, Sigma 8 (2020). issn: 2050-5094. doi: 10.1017/fms.
2020.26. url: http://dx.doi.org/10.1017/fms.2020.26.

[BK22] Anne Broadbent and Martti Karvonen. “Categorical composable cryptogra-

phy”. In: Foundations of software science and computation structures. Vol. 13242.
LectureNotes in Comput. Sci. Springer, Cham, 2022, pp. 161–183. isbn: 9783030992538.

doi: 10.1007/978-3-030-99253-8_9. url: https://doi.org/10.1007/
978-3-030-99253-8_9.

[BKM19] Spencer Breiner, Amir Kalev, and Carl A. Miller. “Parallel Self-Testing of the

GHZ State with a Proof by Diagrams”. In: Electronic Proceedings in Theoretical
Computer Science 287 (Jan. 2019), pp. 43–66. issn: 2075-2180. doi: 10.4204/
eptcs.287.3. url: http://dx.doi.org/10.4204/EPTCS.287.3.

[BM04] Michael Ben-Or and Dominic Mayers. General Security Definition and Com-
posability for Quantum & Classical Protocols. 2004. arXiv: quant-ph/0409062
[quant-ph].

[BMR19] Spencer Breiner, Carl A.Miller, andNeil J. Ross. “GraphicalMethods inDevice-

Independent Quantum C ryptography”. In: Quantum 3 (May 2019), p. 146.

issn: 2521-327X. doi: 10.22331/q-2019-05-27-146. url: https://doi.
org/10.22331/q-2019-05-27-146.

[BP17] John C. Baez and Blake S. Pollard. “A compositional framework for reaction

networks”. In: Reviews in Mathematical Physics 29.09 (Sept. 2017), p. 1750028.
doi: 10.1142/s0129055x17500283. url: https://doi.org/10.1142%
2Fs0129055x17500283.

[BS11] J. Baez and M. Stay. “Physics, Topology, Logic and Computation: A Rosetta

Stone”. In: New Structures for Physics. Ed. by Bob Coecke. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 95–172. isbn: 978-3-642-12821-9. doi:

10.1007/978-3-642-12821-9_2. url: https://doi.org/10.1007/978-
3-642-12821-9_2.

[BS22] Guillaume Boisseau and Paweł Sobociński. “String Diagrammatic Electrical

Circuit Theory”. In: Electronic Proceedings in Theoretical Computer Science 372
(Nov. 2022), pp. 178–191. issn: 2075-2180. doi: 10.4204/eptcs.372.13. url:
http://dx.doi.org/10.4204/EPTCS.372.13.

[BU13] Florian Böhl and Dominique Unruh. Symbolic Universal Composability. Cryp-
tology ePrint Archive, Paper 2013/062. https://eprint.iacr.org/2013/
062. 2013. url: https://eprint.iacr.org/2013/062.

[BV10] Eleanor Birrell and Salil Vadhan. “Composition of Zero-Knowledge Proofs

with Efficient Provers”. In: Theory of Cryptography. Ed. by Daniele Miccian-

cio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 572–587. isbn:

978-3-642-11799-2.

[BW19] John C Baez and Christian Williams. “Enriched lawvere theories for opera-

tional semantics”. In: arXiv preprint arXiv:1905.05636 (2019).

https://doi.org/10.1017/fms.2020.26
https://doi.org/10.1017/fms.2020.26
http://dx.doi.org/10.1017/fms.2020.26
https://doi.org/10.1007/978-3-030-99253-8_9
https://doi.org/10.1007/978-3-030-99253-8_9
https://doi.org/10.1007/978-3-030-99253-8_9
https://doi.org/10.4204/eptcs.287.3
https://doi.org/10.4204/eptcs.287.3
http://dx.doi.org/10.4204/EPTCS.287.3
https://arxiv.org/abs/quant-ph/0409062
https://arxiv.org/abs/quant-ph/0409062
https://doi.org/10.22331/q-2019-05-27-146
https://doi.org/10.22331/q-2019-05-27-146
https://doi.org/10.22331/q-2019-05-27-146
https://doi.org/10.1142/s0129055x17500283
https://doi.org/10.1142%2Fs0129055x17500283
https://doi.org/10.1142%2Fs0129055x17500283
https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.4204/eptcs.372.13
http://dx.doi.org/10.4204/EPTCS.372.13
https://eprint.iacr.org/2013/062
https://eprint.iacr.org/2013/062
https://eprint.iacr.org/2013/062

Bibliography 105

[BW90] Michael Barr and Charles Wells. Category theory for computing science. USA:
Prentice-Hall, Inc., 1990. isbn: 0131204866.

[Cam+19] Jan Camenisch et al. “iUC: Flexible Universal Composability Made Simple”.

In: Advances in Cryptology – ASIACRYPT 2019. Ed. by Steven D. Galbraith

and Shiho Moriai. Cham: Springer International Publishing, 2019, pp. 191–

221. isbn: 978-3-030-34618-8.

[Can00] Ran Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. Cryptology ePrint Archive, Paper 2000/067. https://eprint.
iacr.org/2000/067. 2000. url: https://eprint.iacr.org/2000/067.

[Can06] Ran Canetti. Security and Composition of Cryptographic Protocols: A Tutorial.
Cryptology ePrint Archive, Paper 2006/465. https://eprint.iacr.org/
2006/465. 2006. url: https://eprint.iacr.org/2006/465.

[Can08] Ran Canetti. Lecture 11. Spring 2008. url: https://www.cs.tau.ac.il/
~canetti/f08-materials/scribe11.pdf.

[Can20] Ran Canetti. “Universally Composable Security”. In: J. ACM 67.5 (Sept. 2020).

issn: 0004-5411. doi: 10.1145/3402457. url: https://doi.org/10.1145/
3402457.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. “A Simpler Variant of Univer-

sally Composable Security for Standard Multiparty Computation”. In: Ad-
vances in Cryptology – CRYPTO 2015. Berlin, Heidelberg: Springer-Verlag,
2015, pp. 3–22. isbn: 978-3-662-47999-5. doi: 10.1007/978-3-662-48000-
7_1. url: https://doi.org/10.1007/978-3-662-48000-7_1.

[CF01] Ran Canetti and Marc Fischlin. “Universally Composable Commitments”. In:

Advances in Cryptology — CRYPTO 2001. Ed. by Joe Kilian. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 19–40. isbn: 978-3-540-44647-7.

[CFS16] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. “A mathematical theory

of resources”. In: Information and Computation 250 (2016). Quantum Physics

and Logic, pp. 59–86. issn: 0890-5401. doi: https://doi.org/10.1016/
j.ic.2016.02.008. url: https://www.sciencedirect.com/science/
article/pii/S0890540116000353.

[CG19] Eric Chitambar and Gilad Gour. “Quantum resource theories”. In: Rev. Mod.
Phys. 91 (2 Apr. 2019), p. 025001. doi: 10.1103/RevModPhys.91.025001.
url: https://link.aps.org/doi/10.1103/RevModPhys.91.025001.

[CGP15] Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. “Adaptively Secure

Two-Party Computation from Indistinguishability Obfuscation”. In: Theory of
Cryptography. Ed. by Yevgeniy Dodis and Jesper Buus Nielsen. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2015, pp. 557–585. isbn: 978-3-662-46497-7.

[CK17] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course
in QuantumTheory andDiagrammatic Reasoning. CambridgeUniversity Press,

2017.

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2006/465
https://eprint.iacr.org/2006/465
https://eprint.iacr.org/2006/465
https://www.cs.tau.ac.il/~canetti/f08-materials/scribe11.pdf
https://www.cs.tau.ac.il/~canetti/f08-materials/scribe11.pdf
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/https://doi.org/10.1016/j.ic.2016.02.008
https://www.sciencedirect.com/science/article/pii/S0890540116000353
https://www.sciencedirect.com/science/article/pii/S0890540116000353
https://doi.org/10.1103/RevModPhys.91.025001
https://link.aps.org/doi/10.1103/RevModPhys.91.025001

106 Bibliography

[CP12] Bob Coecke and Simon Perdrix. “Environment and classical channels in cate-

gorical quantummechanics”. In: Logical Methods in Computer Science Volume

8, Issue 4 (Nov. 2012). issn: 1860-5974. doi: 10.2168/lmcs-8(4:14)2012.
url: http://dx.doi.org/10.2168/LMCS-8(4:14)2012.

[Cra+99] Ronald Cramer et al. “Efficient Multiparty Computations Secure Against an

Adaptive Adversary”. In: Advances in Cryptology — EUROCRYPT ’99. Ed. by
Jacques Stern. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 311–

326. isbn: 978-3-540-48910-8.

[Cro94] Roy L. Crole. Categories for Types. Cambridge University Press, 1994.

[CS99] J.R.B. Cockett and R.A.G. Seely. “Linearly distributive functors”. In: Journal
of Pure and Applied Algebra 143.1 (1999), pp. 155–203. issn: 0022-4049. doi:

https://doi.org/10.1016/S0022- 4049(98)00110- 8. url: https:
//www.sciencedirect.com/science/article/pii/S0022404998001108.

[CSV19] Ran Canetti, Alley Stoughton, and Mayank Varia. EasyUC: Using EasyCrypt
to Mechanize Proofs of Universally Composable Security. Cryptology ePrint

Archive, Paper 2019/582. https://eprint.iacr.org/2019/582. 2019. url:
https://eprint.iacr.org/2019/582.

[DR83] Michael Dunn and Greg Restall. “Relevance Logic”. In: Handbook of Philo-
sophical Logic. Ed. by DovM. Gabbay and Franz Guenthner. Kluwer Academic

Publishers, 1983.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. “A randomized proto-

col for signing contracts”. In: Commun. ACM 28.6 (June 1985), pp. 637–647.

issn: 0001-0782. doi: 10.1145/3812.3818. url: https://doi.org/10.
1145/3812.3818.

[Fel17] Giovanni de Felice. “Hopf Algebras in Quantum Computation”. PhD thesis.

University of Oxford, 2017. url: https://www.cs.ox.ac.uk/people/bob.
coecke/Giovanni.

[Fri20] Tobias Fritz. “A synthetic approach to Markov kernels, conditional indepen-

dence and theorems on sufficient statistics”. In: Advances in Mathematics 370
(Aug. 2020), p. 107239. issn: 0001-8708. doi: 10.1016/j.aim.2020.107239.
url: http://dx.doi.org/10.1016/j.aim.2020.107239.

[Gir82] Michèle Giry. “A categorical approach to probability theory”. In: Categorical
Aspects of Topology and Analysis. Ed. by B. Banaschewski. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1982, pp. 68–85. isbn: 978-3-540-39041-1.

[Gir87] Jean-Yves Girard. “Linear logic”. In: Theoretical Computer Science 50.1 (1987),
pp. 1–101. issn: 0304-3975. doi: https : / / doi . org / 10 . 1016 / 0304 -
3975(87)90045- 4. url: https://www.sciencedirect.com/science/
article/pii/0304397587900454.

https://doi.org/10.2168/lmcs-8(4:14)2012
http://dx.doi.org/10.2168/LMCS-8(4:14)2012
https://doi.org/https://doi.org/10.1016/S0022-4049(98)00110-8
https://www.sciencedirect.com/science/article/pii/S0022404998001108
https://www.sciencedirect.com/science/article/pii/S0022404998001108
https://eprint.iacr.org/2019/582
https://eprint.iacr.org/2019/582
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://www.cs.ox.ac.uk/people/bob.coecke/Giovanni
https://www.cs.ox.ac.uk/people/bob.coecke/Giovanni
https://doi.org/10.1016/j.aim.2020.107239
http://dx.doi.org/10.1016/j.aim.2020.107239
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://www.sciencedirect.com/science/article/pii/0304397587900454
https://www.sciencedirect.com/science/article/pii/0304397587900454

Bibliography 107

[GK96] OdedGoldreich andHugoKrawczyk. “On the Composition of Zero-Knowledge

Proof Systems”. In: SIAM Journal on Computing 25.1 (1996), pp. 169–192. doi:
10 . 1137 / S0097539791220688. eprint: https : / / doi . org / 10 . 1137 /
S0097539791220688. url: https://doi.org/10.1137/S0097539791220688.

[GL89] O. Goldreich and L. A. Levin. “A Hard-Core Predicate for All One-Way Func-

tions”. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing. STOC ’89. Seattle, Washington, USA: Association for Comput-

ing Machinery, 1989, pp. 25–32. isbn: 0897913078. doi: 10.1145/73007.
73010. url: https://doi.org/10.1145/73007.73010.

[GM82] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption & how to play

mental poker keeping secret all partial information”. In: Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing. STOC ’82. San

Francisco, California, USA: Association for ComputingMachinery, 1982, pp. 365–

377. isbn: 0897910702. doi: 10.1145/800070.802212. url: https://doi.
org/10.1145/800070.802212.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that yield nothing

but their validity or all languages in NP have zero-knowledge proof systems”.

In: J. ACM 38.3 (July 1991), pp. 690–728. issn: 0004-5411. doi: 10 . 1145 /
116825.116852. url: https://doi.org/10.1145/116825.116852.

[GO94] OdedGoldreich and Yair Oren. “Definitions and properties of zero-knowledge

proof systems”. In: Journal of Cryptology 7.1 (1994), pp. 1–32.

[Gog+73] J. A. Goguen et al. A Junction between Computer Science and Category The-
ory. Tech. rep. 1973. url: https : / / dominoweb . draco . res . ibm . com /
49eae98dc5a21de0852574ff005001c8.html.

[Gol01] O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge

University Press, 2001. isbn: 9780521791724.

[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. “Bounded linear logic:

a modular approach to polynomial-time computability”. In: Theoretical Com-
puter Science 97.1 (1992), pp. 1–66. issn: 0304-3975. doi: https://doi.org/
10.1016/0304-3975(92)90386-T. url: https://www.sciencedirect.
com/science/article/pii/030439759290386T.

[Hås+99] Johan Håstad et al. “A Pseudorandom Generator from any One-way Func-

tion”. In: SIAM Journal on Computing 28.4 (1999), pp. 1364–1396. doi: 10.
1137/S0097539793244708. eprint: https://doi.org/10.1137/S0097539793244708.
url: https://doi.org/10.1137/S0097539793244708.

[HC23] James Hefford and Cole Comfort. “Coend Optics for Quantum Combs”. In:

Electronic Proceedings in Theoretical Computer Science 380 (Aug. 2023), pp. 63–
76. issn: 2075-2180. doi: 10.4204/eptcs.380.4. url: http://dx.doi.org/
10.4204/EPTCS.380.4.

https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://dominoweb.draco.res.ibm.com/49eae98dc5a21de0852574ff005001c8.html
https://dominoweb.draco.res.ibm.com/49eae98dc5a21de0852574ff005001c8.html
https://doi.org/https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/https://doi.org/10.1016/0304-3975(92)90386-T
https://www.sciencedirect.com/science/article/pii/030439759290386T
https://www.sciencedirect.com/science/article/pii/030439759290386T
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.4204/eptcs.380.4
http://dx.doi.org/10.4204/EPTCS.380.4
http://dx.doi.org/10.4204/EPTCS.380.4

108 Bibliography

[Hin20] PeterM.Hines. “ADiagrammatic Approach to Information Flow in Encrypted

Communication”. In: Graphical Models for Security. Ed. by Harley Eades III

andOlgaGadyatskaya. Cham: Springer International Publishing, 2020, pp. 166–

185. isbn: 978-3-030-62230-5.

[HM03] Dennis Hofheinz and Jörn Müller-Quade. A Paradox of Quantum Universal
Composability. 2003. url: https://www.quiprocone.org/Hot%20Topics%
20posters/muellerquade_poster.pdf.

[HS11] Dennis Hofheinz and Victor Shoup. GNUC: A New Universal Composability
Framework. Cryptology ePrint Archive, Paper 2011/303. https://eprint.
iacr.org/2011/303. 2011. url: https://eprint.iacr.org/2011/303.

[HSS20] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. “Low cost constant

round MPC combining BMR and oblivious transfer”. In: Journal of cryptology
33.4 (2020), pp. 1732–1786.

[HV19] Chris Heunen and Jamie Vicary. “1Basics”. In: Categories for Quantum The-
ory: An Introduction. Oxford University Press, Nov. 2019. isbn: 9780198739623.
doi: 10.1093/oso/9780198739623.003.0009. eprint: https://academic.
oup.com/book/0/chapter/367235017/chapter-pdf/50991620/oso-
9780198739623-chapter-9.pdf. url: https://doi.org/10.1093/oso/
9780198739623.003.0009.

[Imp95] R. Impagliazzo. “A personal view of average-case complexity”. In: Proceed-
ings of Structure in Complexity Theory. Tenth Annual IEEE Conference. 1995,
pp. 134–147. doi: 10.1109/SCT.1995.514853.

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Foun-

dations of Mathematics 141. Amsterdam: North Holland, 1999.

[JM20] Daniel Jost and Ueli Maurer. “Overcoming impossibility results in compos-

able security using interval-wise guarantees”. In: Advances in Cryptology–
CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part I 40. Springer.
2020, pp. 33–62.

[JS91] André Joyal and Ross Street. “The geometry of tensor calculus, I”. In: Ad-
vances in Mathematics 88.1 (1991), pp. 55–112. issn: 0001-8708. doi: https:
/ / doi . org / 10 . 1016 / 0001 - 8708(91) 90003 - P. url: https : / / www .
sciencedirect.com/science/article/pii/000187089190003P.

[Kel64] G.M Kelly. “On MacLane’s conditions for coherence of natural associativi-

ties, commutativities, etc.” In: Journal of Algebra 1.4 (1964), pp. 397–402. issn:
0021-8693. doi: https : / / doi . org / 10 . 1016 / 0021 - 8693(64) 90018 -
3. url: https : / / www . sciencedirect . com / science / article / pii /
0021869364900183.

[Kel81] Gregory Max Kelly. The basic concepts of enriched category theory. Fernuni-
versität, 1981.

https://www.quiprocone.org/Hot%20Topics%20posters/muellerquade_poster.pdf
https://www.quiprocone.org/Hot%20Topics%20posters/muellerquade_poster.pdf
https://eprint.iacr.org/2011/303
https://eprint.iacr.org/2011/303
https://eprint.iacr.org/2011/303
https://doi.org/10.1093/oso/9780198739623.003.0009
https://academic.oup.com/book/0/chapter/367235017/chapter-pdf/50991620/oso-9780198739623-chapter-9.pdf
https://academic.oup.com/book/0/chapter/367235017/chapter-pdf/50991620/oso-9780198739623-chapter-9.pdf
https://academic.oup.com/book/0/chapter/367235017/chapter-pdf/50991620/oso-9780198739623-chapter-9.pdf
https://doi.org/10.1093/oso/9780198739623.003.0009
https://doi.org/10.1093/oso/9780198739623.003.0009
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/https://doi.org/10.1016/0001-8708(91)90003-P
https://www.sciencedirect.com/science/article/pii/000187089190003P
https://www.sciencedirect.com/science/article/pii/000187089190003P
https://doi.org/https://doi.org/10.1016/0021-8693(64)90018-3
https://doi.org/https://doi.org/10.1016/0021-8693(64)90018-3
https://www.sciencedirect.com/science/article/pii/0021869364900183
https://www.sciencedirect.com/science/article/pii/0021869364900183

Bibliography 109

[KL07] Dafna Kidron and Yehuda Lindell. Impossibility Results for Universal Compos-
ability in Public-Key Models and with Fixed Inputs. Cryptology ePrint Archive,
Paper 2007/478. https://eprint.iacr.org/2007/478. 2007. url: https:
//eprint.iacr.org/2007/478.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Sec-
ond Edition. Chapman & Hall/CRC Cryptography and Network Security Se-

ries. Taylor & Francis, 2014. isbn: 9781466570269.

[KPB15] Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. “Integrating

Linear and Dependent Types”. In: SIGPLAN Not. 50.1 (Jan. 2015), pp. 17–30.

issn: 0362-1340. doi: 10.1145/2775051.2676969. url: https://doi.org/
10.1145/2775051.2676969.

[Lam58] Joachim Lambek. “The Mathematics of Sentence Structure”. In: The American
Mathematical Monthly 65.3 (1958), pp. 154–170. doi: 10.1080/00029890.
1958.11989160. eprint: https://doi.org/10.1080/00029890.1958.
11989160. url: https://doi.org/10.1080/00029890.1958.11989160.

[Lam74] Joachim Lambek. “Functional completeness of cartesian categories”. In: An-
nals of Mathematical Logic 6.3-4 (1974), pp. 259–292.

[Lam80] Joachim Lambek. “From lambda-calculus to cartesian closed categories”. In:

To HB Curry: essays on combinatory logic, lambda calculus and formalism
(1980), pp. 375–402.

[Law69] F. William Lawvere. “Diagonal arguments and cartesian closed categories”.

In:Category Theory, Homology Theory and their Applications II. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1969, pp. 134–145. isbn: 978-3-540-36101-5.

[LHM19] Kevin Liao, Matthew A. Hammer, and Andrew Miller. “ILC: a calculus for

composable, computational cryptography”. In: Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI 2019. Phoenix, AZ, USA: Association for Computing Machinery, 2019,

pp. 640–654. isbn: 9781450367127. doi: 10.1145/3314221.3314607. url:
https://doi.org/10.1145/3314221.3314607.

[Lin03] Y. Lindell. “General composition and universal composability in secure multi-

party computation”. In: 44th Annual IEEE Symposium on Foundations of Com-
puter Science, 2003. Proceedings. 2003, pp. 394–403. doi: 10.1109/SFCS.2003.
1238213.

[Lin17] Yehuda Lindell. “How to Simulate It—A Tutorial on the Simulation Proof

Technique”. In: Tutorials on the Foundations of Cryptography: Dedicated to
Oded Goldreich. Springer International Publishing, 2017, pp. 277–346. isbn:
9783319570488. doi: 10.1007/978-3-319-57048-8_6.

[Lin22] Yehuda Lindell. “Simple three-round multiparty schnorr signing with full

simulatability”. In: Cryptology ePrint Archive (2022).

https://eprint.iacr.org/2007/478
https://eprint.iacr.org/2007/478
https://eprint.iacr.org/2007/478
https://doi.org/10.1145/2775051.2676969
https://doi.org/10.1145/2775051.2676969
https://doi.org/10.1145/2775051.2676969
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1109/SFCS.2003.1238213
https://doi.org/10.1109/SFCS.2003.1238213
https://doi.org/10.1007/978-3-319-57048-8_6

110 Bibliography

[LLR04] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the Composition of Au-
thenticated Byzantine Agreement. Cryptology ePrint Archive, Paper 2004/181.
https://eprint.iacr.org/2004/181. 2004. url: https://eprint.iacr.
org/2004/181.

[LM00] James J. Leifer and Robin Milner. “Deriving Bisimulation Congruences for

Reactive Systems”. In: CONCUR 2000 — Concurrency Theory. Ed. by Catuscia

Palamidessi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 243–

258. isbn: 978-3-540-44618-7.

[LMZ19] Bert Lindenhovius, Michael W. Mislove, and Vladimir Zamdzhiev. “Mixed

Linear andNon-linear Recursive Types”. In:CoRR abs/1906.09503 (2019). arXiv:
1906.09503. url: http://arxiv.org/abs/1906.09503.

[Lom04] Christian Lomp. “Integrals in Hopf Algebras over Rings”. In: Communications
in Algebra 32.12 (Dec. 2004), pp. 4687–4711. issn: 1532-4125. doi: 10.1081/
agb-200036837. url: http://dx.doi.org/10.1081/AGB-200036837.

[Mac71] SaundersMacLane.Categories for theWorkingMathematician. Graduate Texts
in Mathematics, Vol. 5. New York: Springer-Verlag, 1971, pp. ix+262.

[MAF05] Greg Morrisett, Amal Ahmed, and Matthew Fluet. “L3: A Linear Language

with Locations”. In: Typed Lambda Calculi and Applications. Ed. by Paweł

Urzyczyn. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 293–307.

isbn: 978-3-540-32014-2.

[Mau12] Ueli Maurer. “Constructive Cryptography – A New Paradigm for Security

Definitions and Proofs”. In: Theory of Security and Applications. Ed. by Se-

bastian Mödersheim and Catuscia Palamidessi. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 33–56. isbn: 978-3-642-27375-9.

[Mel06] Paul-André Melliès. “Functorial Boxes in String Diagrams”. In: Computer Sci-
ence Logic. Ed. by Zoltán Ésik. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 1–30. isbn: 978-3-540-45459-5.

[Mel09] Paul-André Mellies. “Categorical semantics of linear logic”. In: Panoramas et
syntheses 27 (2009), pp. 15–215.

[MM90] José Meseguer and Ugo Montanari. “Petri nets are monoids”. In: Informa-
tion and Computation 88.2 (1990), pp. 105–155. issn: 0890-5401. doi: https:
/ / doi . org / 10 . 1016 / 0890 - 5401(90) 90013 - 8. url: https : / / www .
sciencedirect.com/science/article/pii/0890540190900138.

[Mor+21] Greg Morrisett et al. IPDL: A Simple Framework for Formally Verifying Dis-
tributed Cryptographic Protocols. Cryptology ePrint Archive, Paper 2021/147.

https://eprint.iacr.org/2021/147. 2021. url: https://eprint.iacr.
org/2021/147.

[MR11] Ueli Maurer and Renato Renner. “Abstract Cryptography”. In: The Second
Symposium on Innovations in Computer Science, ICS 2011. Ed. by BernardChazelle.
Tsinghua University Press, Jan. 2011, pp. 1–21.

https://eprint.iacr.org/2004/181
https://eprint.iacr.org/2004/181
https://eprint.iacr.org/2004/181
https://arxiv.org/abs/1906.09503
http://arxiv.org/abs/1906.09503
https://doi.org/10.1081/agb-200036837
https://doi.org/10.1081/agb-200036837
http://dx.doi.org/10.1081/AGB-200036837
https://doi.org/https://doi.org/10.1016/0890-5401(90)90013-8
https://doi.org/https://doi.org/10.1016/0890-5401(90)90013-8
https://www.sciencedirect.com/science/article/pii/0890540190900138
https://www.sciencedirect.com/science/article/pii/0890540190900138
https://eprint.iacr.org/2021/147
https://eprint.iacr.org/2021/147
https://eprint.iacr.org/2021/147

Bibliography 111

[MR19] Daniel Mansy and Peter Rindal. “Endemic oblivious transfer”. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity. 2019, pp. 309–326.

[MR92] Silvio Micali and Phillip Rogaway. “Secure Computation”. In: Advances in
Cryptology—CRYPTO ’91. Ed. by Joan Feigenbaum. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1992, pp. 392–404. isbn: 978-3-540-46766-3.

[NC10] Michael A. Nielsen and Isaac L. Chuang.QuantumComputation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010.

[Pav12] Dusko Pavlovic. “Tracing the Man in the Middle in Monoidal Categories”.

In: Coalgebraic Methods in Computer Science. Ed. by Dirk Pattinson and Lutz

Schröder. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 191–217.

isbn: 978-3-642-32784-1.

[Pav14] Dusko Pavlovic. “Chasing Diagrams in Cryptography”. In: Categories and
Types in Logic, Language, and Physics: Essays Dedicated to Jim Lambek on the
Occasion of His 90th Birthday. Ed. by Claudia Casadio et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 353–367. isbn: 978-3-642-54789-8. doi:

10.1007/978-3-642-54789-8_19. url: https://doi.org/10.1007/978-
3-642-54789-8_19.

[Pay18] Jennifer Paykin. “Linear/non-linear types for embedded domain-specific lan-

guages”. PhD thesis. University of Pennsylvania, 2018.

[Ped91] Torben Pryds Pedersen. “Non-interactive and information-theoretic secure

verifiable secret sharing”. In:Annual international cryptology conference. Springer.
1991, pp. 129–140.

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. The MIT

Press, Aug. 1991. isbn: 9780262288460. doi: 10.7551/mitpress/1524.001.
0001. url: https://doi.org/10.7551/mitpress/1524.001.0001.

[PKW22] Marco Patrignani, Robert Künnemann, and Riad S. Wahby. Universal Com-
posability is Robust Compilation. 2022. arXiv: 1910.08634 [cs.PL].

[Pru+18] Klaas Pruiksma et al. “Adjoint Logic”. 2018. url: https://www.cs.cmu.edu/
~fp/papers/adjoint18b.pdf.

[PS10] Raphael Pass and Abhi Shelat. A Course in Cryptography. 2010. url: https:
//www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf.

[Rey83] John C. Reynolds. “Types, Abstraction and Parametric Polymorphism.” In:

IFIP Congress. Ed. by R. E. A. Mason. North-Holland/IFIP, 1983, pp. 513–523.

isbn: 0-444-86729-5. url: http://dblp.uni-trier.de/db/conf/ifip/
ifip83.html#Reynolds83.

[Rie17] Emily Riehl. Category theory in context. en. Courier Dover Publications, Mar.

2017.

[Ril18] Mitchell Riley. Categories of Optics. 2018. arXiv: 1809.00738 [math.CT].

https://doi.org/10.1007/978-3-642-54789-8_19
https://doi.org/10.1007/978-3-642-54789-8_19
https://doi.org/10.1007/978-3-642-54789-8_19
https://doi.org/10.7551/mitpress/1524.001.0001
https://doi.org/10.7551/mitpress/1524.001.0001
https://doi.org/10.7551/mitpress/1524.001.0001
https://arxiv.org/abs/1910.08634
https://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
https://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
http://dblp.uni-trier.de/db/conf/ifip/ifip83.html#Reynolds83
http://dblp.uni-trier.de/db/conf/ifip/ifip83.html#Reynolds83
https://arxiv.org/abs/1809.00738

112 Bibliography

[Rom20] Mario Román. Comb Diagrams for Discrete-Time Feedback. 2020. arXiv: 2003.
06214 [cs.LO].

[Ros21] Mike Rosulek. The Joy of Cryptography. 2021. url: https://joyofcryptography.
com.

[See84] R. A. G. Seely. “Locally cartesian closed categories and type theory”. In:Math-
ematical Proceedings of the Cambridge Philosophical Society 95.1 (1984), pp. 33–
48. doi: 10.1017/S0305004100061284.

[See87a] R. A. G. Seely. “Categorical Semantics for Higher Order Polymorphic Lambda

Calculus”. In: The Journal of Symbolic Logic 52.4 (1987), pp. 969–989. issn:

00224812. url: http : / / www . jstor . org / stable / 2273831 (visited on

04/17/2024).

[See87b] Robert A. G. Seely. “Modelling Computations: A 2-Categorical Framework”.

In: Logic in Computer Science. 1987. url: https://api.semanticscholar.
org/CorpusID:3718688.

[See89] R. A. G. Seely. “Linear Logic, *-autonomous categories and Cofree Coalge-

bras”. In: Categories in Computer Science and Logic (1989), pp. 371–382. doi:
10.1090/conm/092/1003210.

[Sel11] P. Selinger. “A Survey of Graphical Languages for Monoidal Categories”. In:

New Structures for Physics. Ed. by Bob Coecke. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 289–355. isbn: 978-3-642-12821-9. doi: 10.1007/
978-3-642-12821-9_4. url: https://doi.org/10.1007/978-3-642-
12821-9_4.

[Sha92] Adi Shamir. “IP = PSPACE”. In: J. ACM 39.4 (Oct. 1992), pp. 869–877. issn:

0004-5411. doi: 10.1145/146585.146609. url: https://doi.org/10.
1145/146585.146609.

[Sim11] Harold Simmons. An Introduction to Category Theory. USA: Cambridge Uni-

versity Press, 2011. isbn: 0521283043.

[Sip13] Michael Sipser. Introduction to the Theory of Computation. Third. Boston, MA:

Course Technology, 2013. isbn: 113318779X.

[SKM23] Sarah Scheffler, Anunay Kulshrestha, and Jonathan Mayer. “Public verifica-

tion for private hash matching”. In: 2023 IEEE Symposium on Security and
Privacy (SP). IEEE. 2023, pp. 253–273.

[SM15] Mike Stay and Lucius Gregory Meredith. Higher category models of the pi-
calculus. 2015. arXiv: 1504.04311 [cs.LO].

[SS02] Ahmad-Reza Sadeghi and Michael Steiner. Assumptions Related to Discrete
Logarithms:Why SubtletiesMake a Real Difference. Cryptology ePrint Archive,
Paper 2002/126. https://eprint.iacr.org/2002/126. 2002. url: https:
//eprint.iacr.org/2002/126.

https://arxiv.org/abs/2003.06214
https://arxiv.org/abs/2003.06214
https://joyofcryptography.com
https://joyofcryptography.com
https://doi.org/10.1017/S0305004100061284
http://www.jstor.org/stable/2273831
https://api.semanticscholar.org/CorpusID:3718688
https://api.semanticscholar.org/CorpusID:3718688
https://doi.org/10.1090/conm/092/1003210
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://arxiv.org/abs/1504.04311
https://eprint.iacr.org/2002/126
https://eprint.iacr.org/2002/126
https://eprint.iacr.org/2002/126

Bibliography 113

[ST21] Ken Sakayori and Takeshi Tsukada. “Output Without Delay: A 𝜋-Calculus

Compatible with Categorical Semantics”. In: 6th International Conference on
Formal Structures for Computation and Deduction (FSCD 2021). Ed. by Naoki

Kobayashi. Vol. 195. Leibniz International Proceedings in Informatics (LIPIcs).

Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021,

32:1–32:22. isbn: 978-3-95977-191-7. doi: 10.4230/LIPIcs.FSCD.2021.32.
url: https://drops-dev.dagstuhl.de/entities/document/10.4230/
LIPIcs.FSCD.2021.32.

[Sul71] John Brendan Sullivan. “The uniqueness of integrals for Hopf algebras and

some existence theorems of integrals for commutative Hopf algebras”. In:

Journal of Algebra 19.3 (1971), pp. 426–440. issn: 0021-8693. doi: https :
/ / doi . org / 10 . 1016 / 0021 - 8693(71) 90100 - 1. url: https : / / www .
sciencedirect.com/science/article/pii/0021869371901001.

[SV13] Mike Stay and Jamie Vicary. “Bicategorical Semantics for Nondeterministic

Computation”. In: Electronic Notes in Theoretical Computer Science 298 (2013).
Proceedings of the Twenty-ninth Conference on the Mathematical Founda-

tions of Programming Semantics, MFPS XXIX, pp. 367–382. issn: 1571-0661.

doi: https://doi.org/10.1016/j.entcs.2013.09.022. url: https:
//www.sciencedirect.com/science/article/pii/S1571066113000686.

[Swe69] Moss Eisenberg Sweedler. “Integrals for Hopf Algebras”. In: Annals of Math-
ematics 89.2 (1969), pp. 323–335. issn: 0003486X. url: http://www.jstor.
org/stable/1970672 (visited on 04/15/2024).

[SZ24] Riley Shahar and Steve Zdancewic. “Categorical Phase Semantics for Linear

Logic”. Forthcoming. 2024.

[Tol21] Paul Tol. Introduction to Colour Schemes. Aug. 2021. url: https://personal.
sron.nl/~pault/.

[Tre09] Luca Trevisan.Notes for Lecture 27. Apr. 2009. url: https://theory.stanford.
edu/~trevisan/cs276/lecture27.pdf.

[Tro92] Anne Sjerp Troelstra. Lectures on Linear Logic. Center for the Study of Lan-

guage and Information Publications, 1992.

[Unr04] Dominique Unruh. Simulatable security for quantum protocols. 2004. arXiv:
quant-ph/0409125 [quant-ph].

[Unr10] Dominique Unruh. “Universally Composable Quantum Multi-Party Compu-

tation”. In: Proceedings of the 29th Annual International Conference on The-
ory and Applications of Cryptographic Techniques. EUROCRYPT’10. French
Riviera, France: Springer-Verlag, 2010, pp. 486–505. isbn: 3642131891. doi:

10.1007/978-3-642-13190-5_25. url: https://doi.org/10.1007/978-
3-642-13190-5_25.

https://doi.org/10.4230/LIPIcs.FSCD.2021.32
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.32
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.32
https://doi.org/https://doi.org/10.1016/0021-8693(71)90100-1
https://doi.org/https://doi.org/10.1016/0021-8693(71)90100-1
https://www.sciencedirect.com/science/article/pii/0021869371901001
https://www.sciencedirect.com/science/article/pii/0021869371901001
https://doi.org/https://doi.org/10.1016/j.entcs.2013.09.022
https://www.sciencedirect.com/science/article/pii/S1571066113000686
https://www.sciencedirect.com/science/article/pii/S1571066113000686
http://www.jstor.org/stable/1970672
http://www.jstor.org/stable/1970672
https://personal.sron.nl/~pault/
https://personal.sron.nl/~pault/
https://theory.stanford.edu/~trevisan/cs276/lecture27.pdf
https://theory.stanford.edu/~trevisan/cs276/lecture27.pdf
https://arxiv.org/abs/quant-ph/0409125
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-13190-5_25

114 Bibliography

[Vad07] Salil Vadhan. “The Complexity of Zero Knowledge”. In: FSTTCS 2007: Foun-
dations of Software Technology and Theoretical Computer Science: 27th Inter-
national Conference, New Delhi, India, December 12-14, 2007. Proceedings. New
Delhi, India: Springer-Verlag, 2007, pp. 52–70. isbn: 978-3-540-77049-7. doi:

10.1007/978-3-540-77050-3_5. url: https://doi.org/10.1007/978-
3-540-77050-3_5.

[VZ14] Benoît Valiron and Steve Zdancewic. “Finite Vector Spaces asModel of Simply-

Typed Lambda-Calculi”. In: Theoretical Aspects of Computing – ICTAC 2014.
Ed. by Gabriel Ciobanu and Dominique Méry. Cham: Springer International

Publishing, 2014, pp. 442–459. isbn: 978-3-319-10882-7.

[Wad89] Philip Wadler. “Theorems for free!” In: Proceedings of the Fourth International
Conference on Functional Programming Languages and Computer Architec-
ture. FPCA ’89. Imperial College, London, United Kingdom: Association for

Computing Machinery, 1989, pp. 347–359. isbn: 0897913280. doi: 10.1145/
99370.99404. url: https://doi.org/10.1145/99370.99404.

[Wik16] DouglasWikström. “SimplifiedUniversal Composability Framework”. In: The-
ory of Cryptography. Ed. by Eyal Kushilevitz and Tal Malkin. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2016, pp. 566–595. isbn: 978-3-662-49096-9.

[WT03] PhilipWadler and Peter Thiemann. “The marriage of effects and monads”. In:

ACM Trans. Comput. Logic 4.1 (Jan. 2003), pp. 1–32. issn: 1529-3785. doi: 10.
1145/601775.601776. url: https://doi.org/10.1145/601775.601776.

[Yao82] Andrew C. Yao. “Theory and application of trapdoor functions”. In: 23rd An-
nual Symposium on Foundations of Computer Science (sfcs 1982). 1982, pp. 80–
91. doi: 10.1109/SFCS.1982.45.

[Yau16] Donald Ying Yau. Colored operads. American Mathematical Society, 2016.

https://doi.org/10.1007/978-3-540-77050-3_5
https://doi.org/10.1007/978-3-540-77050-3_5
https://doi.org/10.1007/978-3-540-77050-3_5
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/601775.601776
https://doi.org/10.1145/601775.601776
https://doi.org/10.1145/601775.601776
https://doi.org/10.1109/SFCS.1982.45

	Introduction
	Chapter 1: Cryptography
	Foundations
	One-Way Functions
	Proofs by Reduction
	Computational Indistinguishability
	Interactive and Zero-Knowledge Computation
	Adversaries and the Real-Ideal Paradigm

	Cryptographic Problems
	Encryption
	Interactive Function Computation
	Zero-Knowledge Proof

	Composition
	The Issues at Hand
	Composing Interactive Function Computations
	A Counterexample to Parallel Composition
	Universal Composability
	Alternative Approaches

	Chapter 2: Category Theory
	Basic Notions
	Categories
	(Iso)morphisms
	Functors
	Natural Transformations

	Monoidal Categories
	The Definition
	Examples
	String Diagrams
	Symmetry
	Monoidal Functors
	Multicategories

	Chapter 3: Categorical Cryptography
	Computation
	Deterministic Computation
	Probabilistic Computation
	Efficient and Effectful Computation
	Quantum Computation

	Protocols
	States
	Flat Process Conversions
	Linear Process Conversions
	The One-Time Pad
	Extensions to the Framework
	Interactive Proof

	Security
	Attack Models
	The Security Definition
	The One-Time Pad
	A 2-Categorical Generalization

	Conclusion
	Paths Not Taken
	Evaluation

	Appendix A: Computer Scientific Foundations
	Asymptotics
	Algorithms and Determinism
	Complexity Theory

